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SUMMARY

An individual’s genetic makeup plays a large role in
determining susceptibility to Alzheimer’s disease
(AD) but has largely been ignored in preclinical
studies. To test the hypothesis that incorporating
genetic diversity into mouse models of AD would
improve translational potential, we combined a
well-established mouse model of AD with a geneti-
cally diverse reference panel to generate mice that
harbor identical high-risk human mutations but differ
across the remainder of their genome. We first show
that genetic variation profoundly modifies the impact
of human AD mutations on both cognitive and path-
ological phenotypes. We then validate this complex
ADmodel by demonstrating high degrees of genetic,
transcriptomic, and phenotypic overlap with human
AD. Overall, work here both introduces a novel AD
mouse population as an innovative and reproducible
resource for the study of mechanisms underlying AD
and provides evidence that preclinical models incor-
porating genetic diversity may better translate to
human disease.

INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative disorder char-

acterized by both dementia and the accumulation of neuropath-

ological amyloid plaques and tau tangles (Selkoe, 1991). Muta-

tions that drive overproduction of beta-amyloid (Ab) have been

shown to cause early onset familial AD (FAD), leading to a model

in which production and accumulation of Ab is thought to be an

initiating event in a sequence, leading to memory loss, neurode-

generation, gliosis, and synaptic dysfunction (Hardy and Hig-

gins, 1992). However, strategies to directly target amyloid for

clearance have failed to translate into successful treatments,

and the number of deaths attributable to AD and costs associ-

ated with the disease continue to rise.
Although age is the greatest risk factor for developing AD, it is

increasingly clear that genetics and family history play a large

role. The heritability of AD is estimated to be in the range of

50%–80%, indicating an individual’s susceptibility or resilience

to disease is, at least in part, determined by heritable DNA

variants (Gatz et al., 1997). Even among patients with FADmuta-

tions, the age at first symptom onset is widely variable, with

some patients exhibiting symptoms decades later than

predicted based on mutation status. This suggests additional

genetic factors exist that may provide protection from disease

(Ryman et al., 2014). Although a number of genetic risk factors

have been identified (Lambert et al., 2013), besides APOE and

TREM2, effect sizes of identified variants are generally small.

As such, a large proportion of variation in disease risk and

severity remains undefined and unexploited (Ridge et al.,

2013). In addition, the study design utilized in most genome-

wide association tests (e.g., case control) is primed to identify

variants associated with risk of AD, rather than variants that

modify an individual’s disease trajectory and/or delay the onset

of disease and provide protection from AD. This is due primarily

to the fact that asymptomatic individuals rarely enter the clinic for

treatment, and even if they are included in a study, are likely to be

enrolled as cognitively normal controls.

Identifying genetic variants and pathways involved in protec-

tion from AD will provide valuable targets for new therapeutics

to prevent or delay the onset of symptoms. Individuals with

high-risk genotypes but who fail to present with clinical symp-

toms of AD represent an ideal population in which to study resil-

ience. However, causal mutations in APP and PSEN1/2 (i.e.,

high-risk genotypes) are rare in humans, greatly limiting statisti-

cal power and opportunity for analysis. In addition, access to

brain tissue at early disease time points, before overt symptom

onset, is limited for obvious reasons in human studies, preclud-

ing the identification of causal versus collateral molecular mech-

anisms. Thus, mousemodels harboring causal ADmutations are

important tools that present many advantages, including defined

high-risk genotypes, early access to brain tissue, and precise

environmental control.

That said, there are caveats to traditional AD mouse models,

including the fact that most mouse models of AD are maintained
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Figure 1. Genetic Background Modifies AD Symptoms in a Novel Transgenic Reference Panel

(A) Female B6 mice heterozygous for the dominant 5XFAD transgene were bred to males from 27 BXD strains to generate genetically diverse but isogenic F1

offspring.

(B) Body weight and working memory on the y-maze were measured bi-monthly, and at 6 and 14 months, more detailed phenotyping was performed.

(C) As expected, onset of working memory deficits was significantly earlier in AD-BXDs compared to Ntg-BXDs. AD-BXDs: n = 223 (123 females/100 males)

across 28 strains versus Ntg-BXDs; n = 168 mice (107 female/61 male) across 25 strains; one-tailed t(1,51) = 2.1; p = 0.02.

(D) AD-BXDmice exhibited contextual fear acquisition (CFA) comparable to Ntg-BXDmice at 6months. Left: one-tailed t(1,48) = 1.4; p = 0.08, but are impaired by

14 months. Right: one-tailed t(1,49) = 2.0; p = 0.03. Within AD-BXD mice, background strain significantly modified the impact of the transgene on CFA (effect of

strain F(26, 354) = 3.3, p < 0.001).

(legend continued on next page)
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on only a single or a few genetic backgrounds (Onos et al., 2016).

This includes backgrounds of mixed origins, which may

confound interpretation of results. Previous studies in mice

have demonstrated that genetic background has a strong effect

on Ab levels, with several mapping studies in F2 populations

identifying large genomic regions involved inmodulating amyloid

burden (Ryman et al., 2008; Sebastiani et al., 2006). However,

these studies and individual strain-by-strain comparisons have

not evaluated the effect of genetic background on cognitive per-

formance (Jackson et al., 2015; Sipe et al., 1993). Given the

impact of genetics on cognitive decline in human populations

(Gatz et al., 1997), we hypothesized genetic background was

also playing an important role in modifying cognitive decline in

animal models of disease and that inclusion of genetic diversity

would improve translational validity of AD mouse models.

In order to directly test this hypothesis, and to aid in the iden-

tification of specific genes involved in modifying resilience to AD,

we developed the first AD transgenic mouse reference panel.

This panel, which we term the AD-BXDs, combines two well-es-

tablished resources: (1) the 5XFAD transgenic line on an other-

wise fully inbred C57BL/6J (B6) background that recapitulates

various aspects of the human disease, including amyloid-b42

accumulation, cognitive deficits, and neuron loss (Oakley et al.,

2006) and (2) the BXD genetic reference panel, the largest and

best-characterized series of recombinant inbred strains derived

from the two common inbred strains B6 and DBA/2J (D2) (Peirce

et al., 2004; Taylor et al., 1999). The BXD panel segregates for

more than 4.8million sequence variants, includingmany in genes

known to confer risk for AD (Wang et al., 2016). The resulting

panel of F1 hybrids represents a novel and fully isogenic

resource to monitor phenotypic outcomes in individuals

harboring identical high-risk FAD mutations in human APP and

PSEN1 genes, raised in controlled environments, but whose

allelic contributions differ across the remainder of the genome.

The general aim of the work described here is to build and test

the validity of the AD-BXDs as a resource that will enable the

research community to systematically identify sets of genetic

variants and pathways involved in determining individual sus-

ceptibility or resilience to AD. As both parental lines of the AD-

BXD panel are fully inbred, the resulting panel also provides a

reproducible resource to efficiently evaluate gene-by-environ-
(E) AD-BXDmice exhibit recall comparable to Ntg-BXDs during the contextual fea

impaired by 14 months. Right: one-tailed t(1,49) = 1.9; p = 0.03. Within AD-BXD

CFM (effect of strain F(26, 354) = 3.5, p < 0.001).

For (D) and (E), 146 6 6-month AD-BXD (102 females/44males) and 209 14 14-mon

6 6-month Ntg-BXD (83 females/31 males) across 24 strains and 167 14 14-mon

(F and G) Ab42, as measured by ELISA, increased drastically from 6 (F) to 14 (G) m

genetic backgrounds (effect of strain F(22,153) = 2.0; p = 0.01). n = 154 mice

background strain described in Oakley et al. (2006) for comparison. ND, no data

(H) Left: transgene expression was assessed in subset of AD and Ntg-BXD lines. n

the hippocampus were aligned to the humanmutant sequence of APP, quantified

mice exhibited significantly greater hAPP expression (t(1, 291) = 92.3, p < 0.001

ground strain (right). Only strains with Ab42 data are shown here for comparison

(I) Left: same analysis was done for reads aligned to the mouse endogenous App.

(t(1,291) = 2.6; p = 0.01). However, within AD-BXD mice, there was no effect of a

For plots (C)–(E), each point represents a strain average. All t tests in (C)–(E) were o

cognitive function (Kaczorowski et al., 2011; Oakley et al., 2006; Ohno, 2009); Al

See also Figures S1, S2, S3, and S4.
ment-by-treatment effects to test, triage, and translate thera-

peutics more quickly and accurately. To validate this design as

a model of AD, here, we show that our AD-BXD panel faithfully

recapitulates key aspects of the human disease, including

phenotypic variation in disease onset and severity, sensitivity

to genetic variation in genes known to confer risk for human

late-onset AD (LOAD), and a high level of concordance with

transcriptional aspects of human disease. Thus, we present

the AD-BXD panel as a new mouse model of human AD with

high translational potential for both understanding the complex

etiology of FAD and sporadic LOAD and discovering new genetic

and molecular pathways associated with AD risk and resilience.

RESULTS

Genetic Background Modifies Expressivity of FAD
Mutations
In order to evaluate the influence of genetic background on the

impact of causal FAD mutations on behavioral and molecular

phenotypes, we generated a panel of 28 genetically diverse F1

mouse strains with and without FAD mutations. Female B6

mice heterozygous for the autosomal dominant 5XFAD trans-

gene (Oakley et al., 2006) were crossed to males from the BXD

genetic reference panel (Peirce et al., 2004) to generate F1 prog-

eny carrying the 5XFAD transgene (AD-BXDs) or non-transgenic

littermates (Ntg-BXDs; Figure 1A). Working memory and body

weight were monitored bi-monthly, and more in-depth pheno-

typing that included tests of motor function and anxiety was per-

formed at both 6 and 14 months of age (Figure 1B). A subset of

mice was subsequently tested for long-term spatial learning and

memory function using a contextual fear conditioning (CFC)

paradigm (Fanselow, 2000; Neuner et al., 2016). This subset

was immediately harvested following CFC testing, and tissue

was collected for biobanking and later use, including RNA

sequencing and ELISAs, as described below. This time point

(immediately following testing) was chosen in order to capture

molecular changes corresponding to differences in learning-

related intrinsic neuronal excitability reported previously (Kac-

zorowski and Disterhoft, 2009; Kaczorowski et al., 2011).

As expected (Kaczorowski et al., 2011; Oakley et al., 2006;

Ohno, 2009), the 5XFAD transgene accelerated the age at onset
r memory (CFM) task at 6 months. Left: one-tailed t(1,48) = 1.4; p = 0.08, but are

mice, background strain significantly modified the impact of the transgene on

th AD-BXD (111 females/98males) across 26 strains were used, along with 114

th Ntg-BXD mice (106 females/61 males) across 27 strains.

onths (effect of age F(1,153) = 128.0; p < 0.001) but varied significantly across

(89 female/65 male) across 23 strains. Strain B6SJL represents the original

.

= 293 (177 females/116 males across 28 strains). RNA sequencing reads from

by number of transcripts per million reads (TPM), and log transformed. AD-BXD

). Across the AD-BXDs, there were no significant effects of age, sex, or back-

to (F) and (G).

Across the panel, 5XFADmice exhibited slight but significant reduction in App

ge, sex, or background strain (right).

ne-tailed tests based on prior data assessing effects of the 5XFAD transgene on

l barplots in (F)–(I) show means ± SE. *p < 0.05.
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Table 1. Heritability Estimates for Phenotypic Traits in AD- and Ntg-BXDs

Non-transgenic (Ntg)-BXDs

Trait Between-Strain

Variance

Av. within-Strain

Variance

Av. n/Strain Heritability (h2RIx)

Age at onset 7.7 15.7 7.5 0.8

6 months CFA 181.2 433.1 5.1 0.7

6 months CFM 196.6 340.5 5.1 0.7

14 months CFA 146.6 520.7 7.2 0.7

14 months CFM 168.0 321.9 7.2 0.8

6 months sensorimotor composite 0.3 2.1 8.7 0.6

14 months sensorimotor composite 1.7 6.8 7.4 0.6

6 months EPM % time in open arms 7.2 62.7 8.7 0.5

14 months EPM % time in open arms 29.2 149.6 7.4 0.6

AD-BXDs

Trait Between-Strain

Variance

Av. within-Strain

Variance

Av. n/Strain Heritability (h2RIx)

Age at onset 5.7 15.7 8.8 0.8

6 months CFA 142.9 293.7 5.6 0.7

6 months CFM 163.3 376.8 5.6 0.7

14 months CFA 172.0 360.4 9.0 0.8

14 months CFM 141.5 299.8 9.0 0.8

6 months sensorimotor composite 1.2 3.8 10.8 0.7

14 months sensorimotor composite 2.4 9.3 9.2 0.7

6 months EPM % time in open arms 38.8 322.7 10.7 0.6

14 months EPM % time in open arms 266.6 625.6 8.8 0.8

6 months amyloid (ELISA) 2,570.6 2,050.5 3.3 0.8

14 months amyloid (ELISA) 36,141.9 64,897.9 3.9 0.7

Heritability (h2RIx) was determined by calculating the ratio of between-strain variance (i.e., genetic variance) to total sample variance (within-strain vari-

ance due to technical and/or environmental factors plus between-strain variance), given the average number of biological replicates per strain accord-

ing to established methods (Belknap, 1998). Av, average; CFA, contextual fear acquisition; CFM, contextual fear memory; EPM, elevated plus maze;

WM, decline slope.
(AAO) ofworkingmemorydeficits inAD-BXDmice relative toNtg-

BXD mice (Figure 1C) and exacerbated contextual fear acquisi-

tion (CFA) and contextual fearmemory (CFM)deficits, particularly

by 14months of age (Figures 1D and 1E). However, the impact of

causal FAD mutations on cognitive performance varied widely

depending on the specific background strain evaluated. Notably,

this variation in cognitive function parallels the variation observed

in human patients harboring FAD mutations (Ryman et al., 2014)

and was not correlated with strain-specific variation in activity,

pain sensitivity, sensorimotor abilities, or anxiety (Figure S1).

These results suggest theobserved variation in cognitive function

is regulated, in part, by genetic variants that segregate across

the AD-BXD panel. In support, heritability (h2RIx) estimates

comparing between-strain variance (due to genetic diversity) to

total sample variance (due tobothgenetic andenvironmental fac-

tors), given the average number of biological replicates per strain

(Belknap, 1998), demonstrate there is a significant genetic

component underlying observed variation (Table 1).

Human FAD mutations in APP and PSEN1 included in the

5XFAD transgene increase production of the toxic 42-amino-

acid-length amyloid beta species (Ab1–42), thought to be an initi-

ating factor in a cascade of symptoms eventually leading to
402 Neuron 101, 399–411, February 6, 2019
neuron loss and dementia (Hardy and Higgins, 1992). To assess

the impact of genetic background on the levels of Ab1–42 across

the panel, brain extracts from 23 AD-BXD strains were assayed

in duplicate on human Ab1–42-specific sandwich ELISAs

(Oakley et al., 2006). Variation in human Ab1–42 levels was her-

itable (Table 1), and overall levels increased with age (effect of

age F(1,153) = 128.0; p < 0.001; Figures 1F and 1G). A significant

main effect of strain was observed (F(22,153) = 2.0; p = 0.01),

indicating that genetic background significantly modified human

Ab1–42 levels across the panel. In order to test whether elevated

amyloid levels corresponded to an increase in plaque density,

we performed immunohistochemistry (IHC) analysis on a subset

of fixed hemibrains and observed robust plaque deposition in

both the hippocampus and cortex of AD-BXD strains, each of

which significantly correlated with amyloid levels as measured

by ELISA (Figures S2A–S2C). As expected, human Ab1–42 was

not reliably detected in 8 Ntg-BXD brains by ELISA or in 3 Ntg-

BXD brains by IHC (Figure S2D), suggesting that, at least by

6 months of age, Ntg-BXDs do not develop deposition of human

Ab42 compared to their 5XFAD isogenic counterparts. Similar

to what is observed in human populations, no significant corre-

lation was observed between amyloid levels and cognitive
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Figure 2. AD-BXD Panel Is Sensitive to Vari-

ation in Known AD Risk Gene Apoe

(A) The D allele harbors only a single E > D

missense SNP at mouse 163 (red).

(B) Across AD-BXD mice, there was a significant

effect of Apoe allele (F(1,354) = 4.7; p = 0.03), age

(F(1,354) = 12.3; p = 0.001), and sex (F(1,354) =

17.9; p < 0.001) on CFA. There was a trend toward

Apoe having a more significant effect on CFA in

females than in males (strain 3 sex interaction;

F(1,354) = 3.2; p = 0.08).

(C) Across AD-BXD mice, there was a significant

effect ofApoe allele (F(1,354) = 20.9; p < 0.001), age

(F(1,354) = 86.2; p < 0.001), sex (F(1,354) = 4.9; p =

0.03), and an age by sex interaction (F(1,354) = 7.6;

p = 0.006) on contextual fear memory (CFM),

demonstrating that, although strains carrying the D

alleleatApoedo indeedperformmorepoorly on this

task, all female AD mice are more susceptible to

AD-related cognitive decline as measured by CFM.

All barplots in show means ± SE.

See also Figure S5.
function (Figure S3), suggesting partially independent mecha-

nisms work to regulate the extent of cognitive decline and amy-

loid accumulation.

Differences in cognitive function and Ab1–42 pathology were

not explained by an effect of age, sex, or background strain on

the transcription of the 5XFAD transgene itself, as measured

by alignment of RNA-sequencing reads from the hippocampus

to the mutated human APP (Figures 1H and S4A) or PSEN1 (Fig-

ure S4B) sequences that make up the 5XFAD transgene (Oakley

et al., 2006). The lack of a sex difference on either transgene

expression or amyloid levels is in contrast to a previous report

using a single genetic background demonstrating the 5XFAD

transgene is differentially expressed based on sex (Sadleir

et al., 2015), suggesting that sex-specific effects may vary

across genetic backgrounds. In addition, across the AD-BXD

panel, there was no effect of genetic background, age, or sex

on expression of endogenous App (Figures 1I and S4C) or

Psen1 (Figure S4D). Overall, these results suggest that naturally

occurring variants segregating across the AD-BXD panel, rather

than artificial differences due to transgene expression, play a

significant role in determining susceptibility and/or resilience to

changes in cognitive function and amyloid deposition caused

by high-risk FAD mutations.

Cognitive Function in the AD-BXDs Is Sensitive to
Known AD Risk Variants
To test the hypothesis that the inclusion of genetic diversity

would better model human AD, we first evaluated whether the

AD-BXD panel is sensitive to variation in genes known to confer

risk for LOAD. Because the apolipoprotein E gene (APOE) is the

best characterized risk gene for LOAD in human patients and is

relatively well conserved in the mouse (Liao et al., 2015), we

queried variants in mouse Apoe. One SNP in Apoe segregates

across the BXD panel (Figure 2A), occurring near the receptor-

binding region (Mahley et al., 2009). Based on sequence align-

ment, this SNP causes a switch from glutamate to aspartate at

mouse position 163 (Zerbino et al., 2018). Although the exact
functional consequences of this SNP are unknown, and likely

depend on the context of surrounding amino acids, we predicted

theD allele of Apoewould represent a susceptibility allele across

the AD-BXDs based on sequence homology.

To test this hypothesis, we first identified genotyping markers

flanking Apoe across the AD-BXDs and then determined the

allelic composition of Apoe in each strain. A significant effect

of Apoe allele was observed on CFA (F(1,354) = 4.7; p = 0.03),

indicating that strains carrying one copy of the D allele of Apoe

performed worse on this task (Figure 2B). We also observed a

significant effect of age (F(1,354) = 12.3; p = 0.001) and sex

(F(1,354) = 17.9; p < 0.001) on CFA, as well as a trend toward

an interaction between sex and Apoe genotype (F(1,354) = 3.2;

p = 0.08). Together, these results indicate that, although most

mice exhibited age-related decline in acquisition, female mice

generally performed worse on the task and were also particularly

susceptible to the effects of the D allele of Apoe. The Apoe

effect was even more pronounced when we considered CFM;

a significant main effect of Apoe allele was again detected

(F(1,355) = 20.9; p < 0.001), along with significant effects of

sex (F(1,355) = 4.9; p = 0.03), age (F(1,355) = 86.2; p < 0.001),

and a sex by age interaction (F(1,355) = 7.6; p = 0.006; Figure 2C).

These results indicate first that mice harboring a single copy of

the D allele of Apoe exhibited poorer CFM and second that fe-

male mice are more susceptible to AD-related cognitive decline

with age. No effect of Apoe genotype was observed on working

memory traits. Across Ntg-BXDs, Apoe genotype exhibited

either a less robust effect, or no effect, on cognitive performance

on CFA and CFM tasks, respectively (Figure S5).

Overall, the above data demonstrate that variation at the Apoe

locus in mice, particularly those harboring the 5XFAD transgene,

is associated with cognitive outcomes. In humans, additional

genes have been identified that play small, although significant,

roles in regulating susceptibility to AD (Lambert et al., 2013).

Recent studies suggest that information about genetic variation

at these additional loci, in the form of a genetic risk score (GRS),

can better predict an individual’s risk of developing AD (Chouraki
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et al., 2016). In order to evaluate whether naturally occurring

variants in genes associated with LOAD risk in humans are asso-

ciated with cognitive outcomes in the AD-BXD panel, we

computed a GRS for each of our strains similar to the method

described by Chouraki and colleagues in 2016 (Chouraki et al.,

2016). First, we stratified strains into impaired and unimpaired

groups based on 6-month-old CFM (Figure 3A). We then identi-

fied the genotype of each strain at 21 LOAD risk genes (across 19

genetic markers; Table 2) and classified the risk allele of each

gene as that allele that appeared more frequently in the impaired

group. Odds ratios were calculated and transformed based on

risk allele dosage to obtain a final GRS for each strain, which

was normally distributed across the panel (Shapiro-Wilk test

for normality p = 0.7; Figure 3B).

Once each GRS was calculated, we then asked how well a

strain’s score predicted cognitive outcomes as measured on

an uncorrelated task in a separate cohort of AD-BXD mice (i.e.,

14 months CFA). Although no individual risk gene significantly

differentiated impaired versus unimpaired strains at 6 months,

when taken together, the GRS was significantly associated

with cognitive outcomes in AD-BXD mice (Figure 3C). Notably,

the GRS was not associated with cognition in Ntg-BXDs, sug-

gesting genes used to create theGRS exhibit more specificity to-

ward mediating AD-related decline (Figure 3D). We repeated

this entire process with 1,000 sets of 19 randomly selected ge-

netic markers and determined the correlation of the GRS and

14 months AD-BXD CFA was among the top 5% of all observed

permutations, suggesting the additive association of LOAD risk

genes with 5XFAD-related cognitive decline is much greater

than a set of genes randomly distributed across the genome.

In addition, a GRS derived from genotypes at the same risk

alleles but using the distribution of ‘‘impaired’’ and ‘‘unimpaired’’

Ntg-BXD strains rather than AD-BXD strains to define odds ra-

tios for each individual LOAD risk gene showed no relationship

with late-disease cognitive outcomes in either 14 months Ntg-

BXDs or AD-BXDs (Figure S6), further demonstrating these

genes uniquely interact with the 5XFAD transgene. Finally, the

original GRS (Figure 3B) showed no association to non-cognitive

traits, such as amyloid levels, weight, sensorimotor abilities, or

anxiety (Figures 3E–3H). Overall, these results demonstrate (1)

the AD-BXD panel is sensitive to variation in known LOAD risk

variants and (2) the CFA task is particularly sensitive to this vari-

ation and has the potential to be used as a translationally relevant

cognitive assay in preclinical AD studies.

AD-BXD Transcriptome Shows Concordance with Late-
Onset AD Signature
We next decided to investigate whether or not the AD-BXD panel

shared similarities with human AD at the transcriptional level. We

first performed RNA sequencing on hippocampal tissue from a

subset of AD-BXDs and Ntg-BXDs and evaluated the expression

of genes known to be misregulated in AD. As expected from

studies of post mortem human tissue, the 5XFAD transgene

significantly altered the expression of a number of these genes,

particularly Bin1, Clu, Cd33 (Karch et al., 2012), Trem2 (Piccio

et al., 2016), and C1qa (Hong et al., 2016; Figure 4A). Similar to

what we observed for behavioral and pathological phenotypes,

risk gene expression varied across the AD-BXD panel. This sug-
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gests genetic background may influence AD susceptibility by

altering underlying transcriptional networks, so to gain a mecha-

nistic understanding of functional categories altered in AD-BXDs

relative to Ntg-BXDs, we performed differential expression anal-

ysis using DESeq2 (Love et al., 2014) followed by gene set

enrichment analysis (GSEA) (Subramanian et al., 2005; Table

S1). As expected, the gene ontology (GO) functional categories

most significantly enriched among genes observed to be down-

regulated in AD largely related to neuronal activity, structure, and

function (Figure 4B, left) and the GO functional categories most

significantly enriched among genes observed to be upregulated

in AD related largely to immune response (Figure 4B, right).

Together, these data highlight the maintenance of neuron activ-

ity, particularly the activity of select ion channels and receptors,

as pathways that may be augmented to promote resilience and

immune pathways as those that may need to be suppressed to

promote resilience.

To further evaluate whether observed changes in our AD-BXD

model paralleled those observed in human patients, we next per-

formed a series of cross-species comparative analyses using

agedbrain tissue (14monthsAD-BXDmice) tobest parallel the tis-

sue available fromhumanpatients. First,weevaluated the expres-

sion of a set of 60 core genes previously defined as a human AD

consensus signature, primarily enriched for downregulated mito-

chondrial and neuronal genes (Table S2; Hargis and Blalock,

2017). We observed higher concordance between our mouse

panel and this human AD signature (Figure 5A) than that reported

for other AD models on a single genetic background (Hargis and

Blalock, 2017). This effect replicated in 3 independent human da-

tasets tested (Figure S7; Blalock et al., 2004; Blalock et al., 2011;

Hokama et al., 2014). Second, we noted that the significant upre-

gulation of immune-related pathways in our AD-BXD mice (Fig-

ure 4B) paralleled the significant association of immune-related

geneswith humanAD, both at the transcriptional and genetic level

(International Genomics of Alzheimer’s Disease Consortium

(IGAP), 2015; Zhang et al., 2013). To test whether the identity of

genes driving this association were similar across mice and hu-

mans, we usedGeneWeaver (Baker et al., 2016) to calculate over-

lap of genes upregulated in aged 14months AD-BXDmice (Table

S3) and twogene lists associatedwith humanAD. First,weutilized

a list of genesbelonging to the transcriptional co-expressionmod-

ulemost highly associatedwith humanAD identifiedbyZhangand

colleagues (Zhang et al., 2013) and, second, a list of 151 highly

connected AD-related genes identified by Jones et al. (Interna-

tional Genomics of Alzheimer’s Disease Consortium (IGAP),

2015). Each of these lists was significantly enriched for genes

with immune-related annotations. In both cases, the overlap be-

tween mouse and human signatures was significant (Figure 5B).

Finally, we tested whether the AD-specific enrichment of im-

mune-related pathways observed in human AD, but not normal

aging (Raj et al., 2016), was preserved across our AD and Ntg-

BXDs. To do this, we identified GO terms enriched among those

genes significantly differentially expressed between 14 months

AD and Ntg-BXDs (Table S3; 5XFAD-related genes) and those

enriched among genes significantly differentially expressed be-

tween 6 months and 14 months Ntg-BXDs (Table S3; normal

aging-related genes). To enable comparison across datasets,

we identified those GO terms with enough genes to be identified
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performance (G), or 14-month anxiety (H), as measured by percent open entries on the elevated plus maze was observed.

Barplot in (A) shows means ± SE; barplot in (B) shows mean only as a single GRS was derived for each strain.

See also Figure S6.
in each set and compared enrichment strength across AD

and normal aging in our mouse panel (Figure 5C; Table S4).

Enrichment of immune-related terms was exclusively observed
among our list of 5XFAD-related genes and not normal aging-

related genes. A similar trend was observed in neuron- and

ion-channel-related terms, suggesting downregulation of neuron
Neuron 101, 399–411, February 6, 2019 405



Table 2. GenesKnown toConfer Risk of AD inHumansVary across theAD-BXDPanel andConfer VariousDegrees of Risk inOurMouse

Population; This Information Was Used to Create a Genetic Risk Score for Each Strain

Gene

6 months CFM AD

Mouse Chr. SNP Density (SNP/Kb) High-Impact Changes Risk Allele Odds Ratio 95% CI Z Statistic p Value

Inpp5d 1 1.24 NMD SNP + indel B 1.30 0.28–6.3 0.36 0.72

Cr1l 1 0.06 – D 2.00 0.41–9.8 0.85 0.39

Celf1 2 0.70 – D 1.50 0.30–7.4 0.50 0.62

Cass4 2 0.08 – D 1.50 0.30–7.4 0.50 0.62

Zcwpw1 5 0.11 – D 1.63 0.34–8.0 0.61 0.54

Epha1 6 0.00 (indel) – D 1.60 0.33–7.8 0.58 0.56

Cd33 7 3.17 MS, stop gained D 1.67 0.30–9.2 0.59 0.56

Picalm 7 1.75 – D 3.60 0.71–18.3 1.55 0.12

Sorl1 9 12.49 MS, SRV, SAV D 2.50 0.50–12.6 1.11 0.27

Abca7 10 0.05 – D 1.17 0.24–5.6 0.19 0.85

Slc24a4 12 4.07 SRV D 3.60 0.71–18.3 1.55 0.12

Rin3 12 4.95 MS located within same region as Slc24a4

Mef2c 13 0.15 – B 0.86 0.18–4.1 0.19 0.85

Nme8 13 3.68 SRV D 1.40 0.30–6.6 0.42 0.67

Clu 14 0.00 (indel) NMD D 5.50 0.84–36.2 1.77 0.08

Ptk2b 14 1.85 MS, SRV located within same region as Clu

Fermt2 14 2.40 – D 1.83 0.32–10.6 0.68 0.50

Cd2ap 17 4.85 MS, SRV – 1.00 0.21–4.7 0.00 1.00

H2-Eb1 17 21.41 MS, SRV, stop gained D 1.05 0.22–5.0 0.06 0.95

Trem2 17 0.13 – B 1.20 0.25–5.8 0.23 0.82

Bin1 18 0.21 MS D 1.33 0.28–6.3 0.36 0.72

Chr, chromosome; indel, insertion/deletion; MS, missense; SAV, splice acceptor variant; SRV, splice region variant
structure, function, and/or activity to also be a unique feature of

AD relative to normal aging in the mouse. Changes unique to

normal aging include DNA metabolism, RNA processing, and

peptidase activity (Figure 5C, bottom right). Overall, the incorpo-

ration of genetic diversity into a mouse model of AD resulted in a

transcriptomic profile that more closely matched human AD than

previous AD models with limited genetic background variation

(Hargis and Blalock, 2017).
DISCUSSION

AD-BXD Panel Represents a New Translational Model of
Human AD
It has long been recognized that AD is a complex and polygenic

disease, likely influenced by multiple variants, some with rela-

tively small effect sizes (Lambert et al., 2013). Here, we introduce

the first genetically diverse population of AD mice—the AD-

BXDs—as a more translational model of human AD by demon-

strating a high level of concordance between the AD-BXDs

and both familial and sporadic forms of human AD at the molec-

ular and behavioral level. In particular, the observed variation in

AAO mirrors the variation in human patients reported by Ryman

and colleagues (Ryman et al., 2014), suggesting our panel cap-

tures a portion of the phenotypic heterogeneity observed in hu-

man FAD patients. In addition, our female AD-BXD mice appear

to be more susceptible to Apoe risk and AD-related cognitive

decline (Figures 2B and 2C) despite comparable levels of amy-
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loid deposition (Figures 1F and 1G), 5XFAD transgene expres-

sion (Figure 1H), and endogenous App levels (Figure 1I), similar

to epidemiological trends observed in human patients (Altmann

et al., 2014;Mielke et al., 2014; Zokaei et al., 2017). At the genetic

level, we demonstrate that the extent of AD-related cognitive

decline is influenced by a given strain’s specific allele distribution

across a set of 21 loci associated with sporadic LOAD. Tran-

scriptionally, the changes occurring in the AD-BXDs relative to

Ntg-BXDs, particularly at aged time points, show a high level

of overlap with transcriptional changes occurring in human AD

patients relative to age-matched controls, both in terms of upre-

gulated inflammatory pathways and downregulated neuronal

signatures, suggesting some common molecular mechanisms

exist between mouse and human. Overall, results here demon-

strate the critical role genetic background plays in determining

susceptibility to disease and present the AD-BXD panel as a use-

ful tool that will enable the identification of modifier genes more

likely to translate to human patients.
Genetically Diverse Isogenic Mice as a Resource for
Experimental Precision Medicine
In recent years, there has been growing skepticism regarding the

utility of ADmousemodels, in part because research using these

models has failed to translate into successful treatments. There

are a variety of reasons that may explain this failure, many of

which have been discussed previously (Onos et al., 2016). How-

ever, a common theme of many traditional models is a lack of
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(A) Genes known to be associated with AD are

differentially expressed in our panel; n = 132 mice

(65 females/67 males across 15 strains). Each

point represents a single genotype, strain, age,

and sex averaged sample; **p < 0.05 two-tailed

t test.
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relative to all Ntg-BXDs.

See also Table S1.
genetic diversity. Regardless of the specific strain used, the use

of a single genetic background precludes the ability to under-

stand the impact of individual genetic diversity on disease trajec-

tory. Here, we introduce the AD-BXD panel as a new preclinical

resource that will allow future studies to investigate the influence

of genetic complexity on the behavioral, molecular, and patho-

logical phenotypes in AD, as well as response to interventions.

By layering multiple scales of data collected from the AD-BXDs

(phenotype, transcriptomics, proteomics, etc.), we may ulti-

mately be able to identify subtypes of AD and begin to develop

personalized therapeutic interventions. Given the advantages

represented by this experimental design, and the increasing

awareness that genetic background impacts a variety of complex

traits (Sittig et al., 2016), the approach used here should be of

broad interest across scientific disciplines. We hypothesize the

incorporation of genetic diversity into preclinical studies of

various complex diseases will greatly enhance the overall trans-

lational potential of mouse models. In addition, our experimental

design is likely to be broadly applicable to mouse models of hu-

mandisease that incorporate a dominantly inherited high-risk ge-

notype in the form of a transgene or other genetic perturbation. In

these cases, the ultimate identification of genetic factors that

modify disease onset and/or severity will provide insight into

pathways critical for regulating disease pathogenesis.

The Role of Modifier Genes in Normal Aging and
Resilience to AD
The creation of the genetically diverse Ntg and AD-BXD panel

enables the use of genetic mapping to identify modifier alleles

that influence the onset and severity of cognitive decline in
N

both normal aging and AD. The inclusion

of both Ntg and AD lines is particularly

powerful, as the extent to which genetic

mechanisms that underlie normal cogni-

tive aging and AD overlap is still unclear.

Comparison of mapping results across

genotypes will identify alleles that either

act as general modifiers and contribute

to a phenotype, regardless of disease

status, or specific AD modifiers that

exhibit an epistatic relationship with the

5XFAD transgene. To this end, our results

indicate that the B6 background strain

may contribute modifiers that increase
resilience to high-risk 5XFADmutations, creating an ideal oppor-

tunity to model resilience for the first time. In particular, the B6

background appears to attenuate the impact of 5XFAD muta-

tions on cognitive traits, despite moderate-to-high levels of

Ab42 (Figure 1G). In addition, across 21 genes known to confer

risk for LOAD, the B allele represents the protective allele in 17

cases (Table 2). Future studies will utilize these resources to

perform genetic mapping to identify genomic regions involved

in the regulation of cognitive decline and precise genes present

in the B6 background that contribute to resilience. Due to large

haplotype blocks segregating among the BXD strains, it is likely

additional Ntg- and AD-BXD strains will need to be incorporated

to narrow in on causal variants, genes, and pathways regulating

quantitative traits across the panel. As the functional interroga-

tion of all candidate genes will require large investments of

time and resources, it is likely the development of new dis-

ease-modifying strategies will be a community effort.

Improving Rigor and Reproducibility in Preclinical
Studies
In addition to providing an ideal preclinical resource to identify

modifiers of susceptibility and resilience to AD, the AD-BXD

panel presents a multitude of additional advantages. Notably,

as each parental line (C57BL/6J and BXDs) is fully inbred, the

F1 mice described here can be recreated across time and labo-

ratories, maximizing the utility of our characterization of individ-

ual lines as either cognitively resilient or susceptible and

enhancing rigor and reproducibility of the approach. The use of

genetically identical, or isogenic, F1 mice also allows for calcula-

tion of heritability across a number of diverse traits, ranging from
euron 101, 399–411, February 6, 2019 407



lo
g 2F

C
 A

D
-B

X
D

 (H
ip

)

log2FC  Berchtold 2013 (Hip)

Cross-species comparison of AD-related signatures

3709 470 454

J = 0.10, p = 0.002 Genes upregulated 
in 14m AD-BXDs

Zhang et. al. immune 
yellow module

30 121 4058

J = 0.03, p = 0.002

Jones et. al. AD 
GWAS genes 
in ≥2 modules

r² = 0.56

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

-1.0 0.0 1.0 2.0

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Enrichment strength in normal aging (14m Ntg-BXD vs 6m Ntg-BXD)

FDR = 0.05

serine hydrolase activity

endopeptidase activity

peptidase activity

RNA processing

cation channel

adaptive immune 

immune effector
blood microparticle

immune regulation

viral process regulation

endocytosis

defense response

complement

cytokine activation

E
nr

ic
hm

en
t s

tre
ng

th
 in

 A
D

 (1
4m

  A
D

-B
X

D
 v

s 
14

m
  N

tg
-B

X
D

)

DNA metabolism

potassium ion transport

adult behavior

neuron spine

sodium ion transport
RNA splicing

regionalization

upregulated
downregulated

Relative pathway enrichment

A B

C

Figure 5. Aged AD-BXD Transcriptome

Shows High Concordance with Late-Onset

Human AD Signature

(A) 39 out of 60 (65%) of AD signature genes

identified by Hargis and Blalock (2017) show

concordant significant changes in expression

across mouse and human transcriptomes. The

log2 fold change (FC) of significantly differentially

expressed genes between 14-month AD- and

Ntg-BXDs is plotted on the y axis, and the log2FC

of gene expression between human AD patients

and controls from a study by Berchtold et al. (2013)

is plotted on the x axis. Each point represents a

single gene; discordant genes with log2 fold

changes with opposite direction have been high-

lighted in red.

(B) Genes upregulated in 14-month AD-BXDs

relative to Ntg-BXDs were compared to genes

associated with human AD by Zhang et al. (2013;

top) and Jones and colleagues (International Ge-

nomics of Alzheimer’s Disease Consortium (IGAP),

2015; bottom). A significant overlap was identified

in both cases.

(C) Graph of enrichment strength of GO categories

across (y axis) mouse AD or (x axis) normal aging.

Gene set enrichment analysis was performed on

genes identified to be differentially expressed

relative to 5XFAD carrier status or normal aging in

Ntg-BXDs (Table S3). For GO terms that were

identified in both scenarios, the false discovery

rate (FDR) q values were transformed to obtain a

measure of enrichment strength and scores were

plotted against each other to identify unique and/

or common differentially regulated GO terms. As

such, each axis can be thought of significance; the

upper left quadrant highlights pathways that are

uniquely significantly altered in AD-BXDs relative

to Ntg-BXDs, and the bottom right quadrant

highlights pathways that are uniquely significantly

altered in normal aging (14-month Ntg-BXDs

versus 6-month Ntg-BXDs). Data points are

colored based on directionality of enrichment

score calculated by GSEA: red, genes belonging

to this category were significantly upregulated

in given scenario; blue, genes belonging to

this category were significantly downregulated in

given scenario. Dotted lines represent enrichment

scores for FDR q value = 0.05.

See also Figure S6 and Tables S2, S3, and S4.
body weight and sensorimotor abilities to anxiety and cognitive

function. Traits with high heritability are, by definition, largely

influenced by genetics rather than environmental or technical

factors and thus are more likely to replicate across time and lab-

oratories. Identification of traits that are robust to environmental

influences will enhance reproducibility of research and confi-

dence that results will translate from the bench to clinic more

rapidly. Traditional studies that utilize only a single inbred strain

to study disease are useful for understanding basic mechanisms

associated with symptom onset but are equivalent to study dis-

ease in a single human. In contrast, results from studies that

utilize diverse genetic backgrounds are a better model of com-

plex disease across individuals and are, therefore, more likely

to generalize across patient populations.
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Consideration of Tau Pathology
One of the limitations of our study is the lack of consideration of

tau pathology. Because the 5XFAD transgene is not generally

thought to induce significant tau pathology (Oakley et al.,

2006), we did not evaluate tau pathology across the AD-BXDs.

As hyperphosphorylated tau is one of the main pathological

events observed in AD, this is a general shortcoming of most

currently available mouse models of AD. Although beyond the

scope of this study, naturally occurring variants in Mapt (see

Sanger Mouse Genomes project; Keane et al., 2011) segregate

across the BXD panel and may influence the production of hy-

perphosphorylated tau (and ultimately neurofibrillary tangles).

As such, it is possible that some genetic backgrounds do exhibit

tau pathology. These strains (if identified) would provide ideal



models for preclinical screens in future studies and contribute to

our understanding of the genetic variants modifying production

and/or clearance of hyperphosphorylated tau, as tau and amy-

loid neuropathologies do not often occur together in currently

used mouse models (Kitazawa et al., 2012). As tau pathology

has been reported to be more strongly associated with cognitive

function in AD than other pathologies (Brier et al., 2016), the AD-

BXD panel may provide new opportunities to study the relation-

ship between tau, amyloid, and cognitive function in the context

of genetic diversity.
Conclusions and Future Directions
The ultimate goal of mouse studies relating to AD is the eventual

translation of identified candidates into viable human therapeu-

tics or biomarkers of disease. Our results suggest the AD-BXD

panel is a valuable resource to do just that, as we demonstrate

high levels of overlap between the AD-BXDs and human AD at

the genetic, transcriptional, and phenotypic levels. In addition,

we validate contextual fear conditioning, particularly the acquisi-

tion phase, as a translationally valid task that is likely to share

some of the same underlying mechanisms as current cognitive

tests used in the human clinic. Together, the combination of

new tools (i.e., AD-BXDs) and valid tasks (contextual fear condi-

tioning), used at the appropriate time points, may enable, for the

first time, the identification of genetic modifiers of AD suscepti-

bility that can be targeted as new therapeutic opportunities.

Future studies will use the resources described here for genetic

mapping and integration of both gene and protein expression

profiling to accomplish this goal.
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Mouse: BXD99: BXD99/RwwJ The Jackson Laboratory JAX #007142

Mouse: BXD100: BXD100/RwwJ UTHSC CITG JAX #007143
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DESeq2 Love et al., 2014 http://Bioconductor.org/packages/release/
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FreezeFrame Neuner et al., 2015 Coulbourn Instruments

ANY-maze Stoelting Co. http://Anymaze.co.uk
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C. Kaczorowski (catherine.kaczorowski@jax.org).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Female congenic C57BL/6J mice hemizygous for the dominant 5XFAD transgene (Oakley et al., 2006), which consists of 5 human

mutations known to cause familial AD [three in amyloid precursor protein (APP; Swedish: K670N,M671L, Florida: I716V, and London:

V717I) and two in presenilin 1 (PSEN1; M146L and L286V)], were obtained from The Jackson Laboratory (JAX MMRRC Stock No:

34848-JAX). These mice were bred with 28 males from a set of genetically diverse recombinant inbred strains from the well-estab-

lished BXD genetic reference panel (Peirce et al., 2004). By selecting the same maternal background strain (i.e., 5XFAD-C57BL/6J)

across the panel for cross with male BXD strains, we were able to introduce variants in the nuclear DNA, hold the mitochondrial

genome constant, and control for strain-specific differences in maternal behavior on offspring behavior. The F1 progeny resulting

from this B6-5XFAD by BXD cross are isogenic recombinant inbred backcross mice, each harboring one maternally derived B allele

and either a B or D paternally derived allele at any given genomic locus. As expected from aMendelian pattern of inheritance,�50%

of these F1 mice carry the 5XFAD transgene (termed AD-BXDs) and �50% are non-transgenic (Ntg) littermate controls referred to

Ntg- BXDs. Male and female offspring were group housed (2-5 per cage) and maintained on a 12 hr light/dark cycle with ad libitum

access to food and water. All mice were genotyped for the 5XFAD transgene through a combination of in-house genotyping accord-

ing to The Jackson Laboratory protocols for strain #34848-JAX and outside services (Transnetyx, TN, USA, and The Jackson

Laboratory Transgenic Genotyping Services). Working memory and body weights were monitored longitudinally, and more detailed

phenotyping occurred at 6 and 14m. These time points were selected to obtain an adult phenotype (6 m) and a middle-aged to aged

time point (14 m) that captured variation in disease symptoms before the mice exhibited severe health-related problems that

confounded behavioral testing. All mouse experiments occurred at University of Tennessee Health Science Center and were carried

out in accordance with the standards of the Association for the Assessment and Accreditation of Laboratory Animal Care (AAALAC),

as well as the recommendations of the National Institutes of Health Guide for the Care and Use of Laboratory Animals. The protocol

was approved by the Institutional Animal Care and Use Committee (IACUC) at the University of Tennessee Health Science Center.

METHOD DETAILS

Y-maze
For all behavioral testing, mice were habituated to transport and to the testing room for three days prior to testing. The y-maze test of

spontaneous alternation was performed as described previously (Oakley et al., 2006). The y-maze used for testing wasmade of clear

acrylic with arms that were 2’’ wide x 12’’ long x 2’’ high. The maze was placed on a table in a dimly lit room and spatial cues were

displayed on walls around the table. Mice were placed in a randomized start arm and video tracking software was used to monitor

arm entries (ANY-maze, Stoelting Co., IL, USA). An arm entry was called when the mouse’s entire body, including the two back feet,

entered the arm. The sequence and total number of arms entered was recorded, and the percentage of successful alternations was

calculated as follows: number of alternations/maximum possible alternations (total number of arms entered – 2) x 100. For each

animal that was measured longitudinally (i.e., not harvested at the early 6 m time point), the age at which each animal became

‘impaired’, or performed below chance levels (50%), was recorded and used as the animals ‘‘age at onset’’ [AD-BXDs: n = 226

(126 females/100males) across 28 strains versus Ntg-BXDs, n = 171mice (108 females/63males) across 25 strains]. Strain averages

for age at onset were then calculated.

Sensorimotor battery
At 6 m [AD-BXDs n = 284 (185 females/90 males) across 28 strains, Ntg-BXDs n = 220 (158 females/62 males) across 27 strains] and

14m [AD-BXDs n = 222 (104 females/106males) across 26 strains, Ntg-BXDs n = 172 (109 females/63males) across 25 strains], mice
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were subjected to a sensorimotor battery consisting of three tasks. First, mice were placed in the center of a 3-foot long narrow (0.5’’)

beam elevated 20.75’’ off a table surface and the time taken for the mouse to cross the narrow beam onto a safe platform on either

side was measured. Second, mice were placed face-down on a wire mesh grid (holes were 1cm x 1cm) that was placed at a 45�

angle. The time taken for a mouse to right itself (negative geotaxis) was recorded. A 3 minute maximum time limit was imposed

for both the narrow beam and incline screen tests. If a mouse fell from the narrow beam, the maximum score of 180 s was given.

Third, grip strength was measured using a standard grip strength meter (Colbourn Instruments). Each of these three tasks were

repeated in triplicate and the average score across three trials was used. For each mouse, a z-score based on the 6 m population

average was calculated for each task and the three z-scores were summed to derive a sensorimotor composite score, which was

used here to relate sensorimotor performance to cognitive abilities.

Elevated plus maze
At 6 m [AD-BXDs n = 280 (191 females/89 males) across 28 strains, Ntg-BXDs n = 220 (158 females/62 males) across 27 strains] and

14 m [AD-BXDs n = 221 (116 females/105 males) across 26 strains, Ntg-BXDs n = 173 (110 females/63 males) across 25 strains],

anxiety was evaluated using an elevated plus maze task. Mice were placed in the center of the maze and allowed to explore for 6 mi-

nutes. Video tracking software (ANY-maze, Stoelting Co.) was used to track the mouse and calculate the time spent in open versus

closed arms of themaze as well as the number of arm entries into either open or closed arms, the total number of arm entries, and the

total distance traveled in the maze.

Contextual fear conditioning
Following 3 days of habituation to transport and to the testing room, mice were trained on a standard contextual fear conditioning

(CFC) paradigm as previously described (Neuner et al., 2015). Training consisted of a 180 s baseline period followed by four mild

foot shocks (1 s, 0.9mA), separated by 115 ± 20 s. A 40 s interval following each foot shock was defined as the post-shock interval,

and the percentage of time spent freezing during each of these intervals was measured using FreezeFrame software (Coulbourn

Instruments, PA, USA). The percentage of time spent freezing during the final post-shock interval (PS4) was used as an index of

contextual fear acquisition (CFA). Twenty-four hours later, hippocampus-dependent contextual fear memory (CFM) was tested by

returning the mouse to the testing chamber for 10 min. The percentage of time spent freezing during the testing trial was measured

using FreezeFrame software and used as an index of CFM. For CFC, 146 6mAD-BXD (102 females/44males) and 209 14mAD-BXD

(111 females/98 males) across 26 strains were used, along with 114 6 m Ntg-BXD (83 females/31 males) across 24 strains and 167

14 m Ntg-BXD mice (106 females/61 males) across 27 strains. Pain sensitivity was evaluated in a subset of mice by recording the

length of activity burst following each shock. An average post-shock reactivity score was calculated by averaging the length of

each activity burst following the four training shocks.

Enzyme-linked immunosorbent assay (ELISA)
Brains were removed immediately following CFC at appropriate time points (6 m or 14 m) and hemisected. One half of the brain was

immediately dissected, snap frozen, and stored at�80�C until use. Beta-amyloid 1-42 (Ab42) levels were quantified from sections of

temporal cortex [6 m n = 72 mice (46 female/46 male) across 22 AD-BXD strains, 14 m n = 82 mice (43 female/33 male) across 21

AD-BXD strains] as previously described (Oakley et al., 2006). Briefly, tissue was homogenized in 1X PBS + 1% Triton X-100 using

the TissueLyser II system (QIAGEN) and sonicated 2x10s on low power. Protein concentration was determined using a NanoDrop

2000 UV-Vis Spectrophotometer (ThermoScientific, USA). Brain homogenates (10 mg/ml) were extracted in a final concentration

of 5MGuHCl overnight at 4�C. Samples were then diluted appropriately and run in duplicate on Ab42-specific sandwich colorimetric

ELISAs according to the manufacturer’s protocol (Cat# 298-92401, Wako Chemicals, Richmond, VA). Optical densities at 450 nm

were read on a Biotek plate reader (BioTek, USA) and Ab42 concentration was determined by comparison with Ab42 standard

curves. Only readings in the linear range of the standard curve were included in analysis. Duplicates were averaged to determine

concentration of Ab42 in each sample. Finally, Ab42 concentrations were normalized to total protein concentration and are reported

as nanograms of Ab42 per milligrams of total protein.

Immunohistochemistry and plaque quantification
At harvest, the half brain not used for fresh dissection was placed in 4%paraformaldehyde and kept at 4C until further use. In order to

minimize technical variation in immunohistochemistry, brains were sent to Neuroscience Associates (Knoxville, TN), where 40

hemibrains were embedded, processed, and stained simultaneously. Briefly, the brains were freeze-sectioned coronally at 40 mm

intervals (not including cerebellum) and staining for Ab1-42 was performed on every 24th section spaced at 960 mm, yielding approx-

imately 9 sections per hemibrain. For analysis, images of each section containing hippocampus were collected on aNikon Eclipse 90i

microscope using NIS-Elements Advanced Research program. Images were taken using a 2x objective with computer automated

focusing. Approximately 4 images were captured for each hemibrain and stitched together using NIS-Elements Advanced Research

program. ImageJ particle analysis was used to automate detection of plaques (Hurtado et al., 2010). Regions of interest (hippocam-

pus and cortex) in each image were manually outlined and pixel size of each region calculated and used to determine the percentage

of each area covered by amyloid plaques, controlling for regional size differences. Neuroscience Associates also performed scanning

of each slide at 20x using a Huron scanner and these images are used for illustrative purposes in Figure S2.
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Heritability estimates
Heritability estimates for each phenotype (Table 1) were calculated according to established methods (Belknap, 1998). Briefly, we

compared between-strain variance (due to genetic diversity, VG) to total sample variance (due to both genetic and environmental

factors, VE) given the average number of biological replicates per strain (n) according to the following formula: h2RIx = VG/(VG +

VE/n). The average number of mice per strain was used to represent n and is reported in Table 1. VE was calculated by summing

between-strain variance and within-strain variance, as within-strain variance should capture all variation not due to genetic diversity.

As heritability was calculated using bothmales and females, within-strain variance will also capture variation due to sex. However, as

we calculated heritability independently for each trait of interest across AD- and Ntg-BXDs, our heritability estimates do not capture

variation due to age or genotype.

RNA sequencing
Snap frozen hippocampi from AD-BXD strains and Ntg-BXD littermate controls at 6 m [AD-BXDs n = 33 (15 females/18males) across

13 strains, Ntg-BXDs n = 31 (17 females/14males) across 14 strains] and 14m [AD-BXDs n = 36 (16 female/20male) across 14 strains,

Ntg-BXDs n = 33 (17 female/16 male) across 15 strains] were used for RNA sequencing. RNA was isolated on a Qiacube using the

RNeasy mini kit (QIAGEN) and treated with DNase to remove contaminating DNA. RNA quality was confirmed using a BioAnalyzer

(Agilent Technologies). All samples had RNA Integrity Numbers (RIN values) > 8.0. Sequencing libraries were prepared from 1 mg RNA

with the Truseq Stranded mRNA Sample Preparation Kit (Illumina Inc) following the manufacturer’s protocol. Final PCR-enriched

fragments were validated on a 2200 Tapestation Instrument using the D1000 ScreenTape (Agilent Technologies) and quantified

by qPCR using a Universal Library Quantification Kit (Kapa Biosystems) on the QuantStudio 6 Flex (ThermoFisher Scientific). Final

library pools were sequenced by 75bp paired-end sequencing on a HiSeq2500 (Illumina Inc). Because both C57BL/6J and DBA/

2J alleles segregate within our panel, the GBRS/EMASE pipeline (Raghupathy et al., 2018) developed by the Churchill group at

The Jackson Laboratory was used in order to align reads to a diploid transcriptome (https://emase.readthedocs.io/en/latest/). An

expectation maximization algorithm was used in order to align reads to the correct allele, allowing for the quantification of both total

reads assigned to a gene and the number of reads assigned to either the B or D allele. For final by-strain analysis, samples belonging

to the same strain/sex/age/genotype group were averaged. Differential expression analysis was conducted using the DESeq2 pack-

age (Love et al., 2014). For evaluation of transgene expression and its effect on endogenous App and Psen1 expression, RNA-

sequencing reads from a larger subset of AD- and Ntg-BXDs [n = 293 (177 females/116 males across 28 strains)] were sequenced

according to identical methods and were additionally aligned to the mutated human APP and PSEN1 sequences. Expression was

quantified using transcripts per million and then log transformed to compare expression across groups. Transgene and endogenous

App and Psen1 expression is available as Table S5.

Comparison of AD-BXD and human transcriptomes
In order to evaluate how well the AD-BXD transcript profile matches that of human AD, we utilized a dataset recently published by

Hargis and Blalock, 2017, comparing existing mouse models of AD to human AD. They identified a consensus AD signature consist-

ing of 60 genes derived from the top 10% commonly upregulated and downregulated genes across three human AD datasets (Table

S2). In order to see how the transcriptome from our AD-BXD panel compared to normal expression patterns, differential expression

analysis comparing hippocampal gene expression from 14 m AD-BXD lines to non-carrier littermate controls was performed using

DESeq2 (Love et al., 2014). The log2 fold change (log2FC) for each of the 60 AD consensus genes that were significantly differentially

expressed (nominal p value < 0.05) across AD andNtg-BXDswas identified and used for comparison across human andmouse data-

sets obtained from Hargis et. al. (Hargis and Blalock, 2017). To evaluate similarities between immune-enriched genes upregulated in

AD-BXDs and gene lists identified as associated with AD from Zhang et al. (2013) and International Genomics of Alzheimer’s Disease

Consortium (IGAP) (2015), all three gene lists were uploaded into GeneWeaver (Baker et al., 2016) and Jaccardian similarity indexes

were calculated and evaluated for significance.

Gene set enrichment analysis
Gene set enrichment analysis (GSEA) was performed as previously described (Neuner et al., 2016; Subramanian et al., 2005). Briefly,

significantly differentially expressed genes from the comparison of interest (Table S1: All AD-BXD versus All Ntg-BXD, Table S3: 14m

AD-BXD versus 14 m Ntg-BXD and 6 m Ntg-BXD versus 14 m Ntg-BXD) were ranked according to log2 fold change. Gene ontology

(GO) gene sets were obtained from the Broad Institute’s Molecular Signatures Database (MSigDB) (Liberzon et al., 2015) and ranked

gene lists were tested for enrichment using GSEA’s GSEAPreranked feature, version 3.0. To compare functional annotation enrich-

ment among differentially expressed genes across AD and normal aging (Figure 5), GO terms identified in each comparison (late-

stage AD: 14 m AD-BXD versus 14 m Ntg-BXD, Table S3 and normal aging: 6 m Ntg-BXD versus 14 m Ntg-BXD, Table S3) were

extracted from GSEA results. A score for enrichment strength was calculated by transforming the FDR q-values generated by

GSEA using the following formula: -log10(FDRq + 0.001), similar to that described in (Raj et al., 2016). The values calculated in

each scenario (AD and normal aging) were then plotted against each other in Figure 5 to identify those pathways with stronger enrich-

ment in AD than normal aging, and vice versa.
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Calculation of a genetic risk score
To evaluate whether the AD-BXD panel was sensitive to variation in knownAD risk loci, we derived a genetic risk score for each strain,

similar to that described by Chouraki and colleagues in 2016 (Chouraki et al., 2016). Strains were first stratified into impaired (below

the AD-BXD population average) and unimpaired (above the AD-BXD population average) based on CFM performance at 6 m. We

then identified the genotype of each strain at 21 genes known to contribute risk for AD and identified the risk allele of each gene (i.e.,

the allele that appeared more frequently in the impaired group, Table 2). Note as some genes appeared in the same linkage block,

only 19 genotypeswere used in the calculation of theGRS. The odds ratio for each genewas calculated and log transformed to deter-

mine an individual risk score per gene. These individual risk scores were used to derive an overall genetic risk score for each strain

that reflected how many copies of each risk allele were present. Overall genetic risk scores were transformed based on previous

methods (Chouraki et al., 2016) using the following formula: total risk score * (# of markers tested/sum of individual gene risk scores).

The GRS was then correlated to cognitive traits as reported. To avoid influence from our original definition of ‘impaired’ versus ‘un-

impaired’ using 6 m CFM, we correlated GRS to uncorrelated, independent cognitive tasks. As contextual fear conditioning is a

cross-sectional task, and we wanted to investigate the extent to which these genes regulated cognitive decline, we focused on

cognitive tasks from a separate cohort of aged AD-BXDs, particularly 14 m CFA. Finally, to empirically estimate the null distribution

for the correlation of our genetic risk score and cognitive traits of interest, we randomly sampled 1000 sets of 19 markers across the

genome and repeated the derivation of GRS. We created 1000 GRS from randomly sampled data, and correlated each random GRS

to strain-matched cognitive performance, which illustrated the correlation between 14mCFA and our derivedGRSwas stronger than

the correlation observed for 95% of randomly sampled genes. As an additional control, we repeated the process but based on allelic

distribution of risk alleles across Ntg-BXDs. We defined Ntg-BXD strains as ‘impaired’ versus ‘unimpaired’ based on 6 m CFM

performance, identified the risk allele for each of the 21 genes listed in Table 2, calculated the odds ratio for each, and derived a

Ntg-based GRS. This GRS showed no relationship with cognitive outcomes in either Ntg- or AD-BXDs, or any non-cognitive traits

tested. Table 2, gene lengthswere obtained using start and end positions listed in Ensembl version 92 and SNP counts were obtained

from Sanger, release REL-1505 (Keane et al., 2011).

QUANTIFICATION AND STATISTICAL ANALYSIS

All experiments and data analysis were conducted with experimenters blind to strain background and genotype (5XFAD versus Ntg)

where appropriate. Statistical analysis was performed using SPSS software Version 23 (IBM), R, and Excel. Distribution was evalu-

ated for normality using Shipiro-Wilkes test. Additional analyses included independent unpaired t tests, univariate ANOVAs, Pearson

correlation, and Jaccard index to test similarity. Correction for multiple comparisons was also used where appropriate (i.e differential

expression analysis). Data values reported in both the main text and figure legends are given as mean ± standard error of the mean

unless otherwise stated. Outliers were identified based on a pre-defined criteria of average values ± 3 SD outside the mean.

DATA AND SOFTWARE AVAILABILITY

Genotypes from the BXD strains are publicly available on GeneNetwork.org. RNA-sequencing from the hippocampus of a subset of

AD-BXD strains is available on Gene Expression Omnibus (GEO). The accession number for the data reported in this paper is GEO:-

GSE101144. All raw data, including raw phenotype information, have been deposited in the AMP-AD Knowledge Portal synapse at

the following link: https://doi.org/10.7303/syn17016211. Strain-averaged behavioral data has been deposited on GeneNetwork.org

and is available as Record IDs 20473-20964. EMASE software used for alignment of RNA sequencing reads to a diploid transcrip-

tome is available online at: (https://emase.readthedocs.io/en/latest/).
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