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Numerous recent reports document a lack of reproducibility of preclinical studies, raising concerns about
potential lack of rigor. Examples of lack of rigor have been extensively documented and proposals for
practices to improve rigor are appearing. Here, we discuss some of the details and implications of previously
proposed best practices and consider some new ones, focusing on preclinical studies relevant to human
neurological and psychiatric disorders.
Introduction
This issue of Neuron focuses on translational neuroscience and

features extraordinary advances in preclinical research that point

the way to new therapies for devastating neurological and psy-

chiatric disorders that affect millions. Against this background

of accomplishment, however, is the increasing documentation

that many published findings are not replicated when there are

explicit attempts to do so (Prinz et al., 2011). This includes

many promising preclinical findings in different fields. For

example, one study in oncology research reports failure to repli-

cate 90% of the tested papers (Begley and Ellis, 2012). In one

example in neuroscience, 70 different drugs reported to prolong

life in a mouse model of ALS had no significant effect in 221

separate replication experiments involving over 18,000 mice

(Scott et al., 2008). Also, in an explicit replication project in spinal

cord injury, supported by the National Institute of Neurological

Disorders and Stroke (NINDS), only about 10% of the target

studies were fully replicated, although there were some partial

replications (see Steward et al., 2012 for an interim summary).

In June, 2012, the NINDS sponsored a workshop entitled

‘‘Optimizing the Predictive Value of Preclinical Research.’’ This

workshop was held because of the growing perception of prob-

lems with the basic experimental design of preclinical studies

relevant to neurological disorders, a concern about insufficient

rigor in experimental execution, and a concern about failure to

replicate promising preclinical findings. The purpose of thework-

shop was to define the problems and possible solutions. One

suggested action plan was to develop a consensus short list of

standards for preclinical studies in general, and a more specific

and perhaps more extensive list for studies involving particular

approaches, model systems, or disorders. A first step toward

this goal came with the publication of ‘‘A call for transparent re-

porting to optimize the predictive value of preclinical research’’

(Landis et al., 2012). Based on this, the NIH issued a call for pub-

lishers to follow best practices related to reproducibility (http://

www.resourcenter.net/images/cSE/files/2014/NIHPrinc.pdf).

Subsequent reports have further documented examples of

lack of reproducibility and examples of common practices that

lack rigor (Begley, 2013; Howells et al., 2014). These reports
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have triggered further discussions about changes in grant review

criteria on the front end (Tabak, 2014; Wadman, 2013) and re-

view criteria for publications on the back end (Howells et al.,

2014; McNutt, 2014). Building on these illustrations of the prob-

lems and other suggested guidelines (Henderson et al., 2013;

Kilkenny et al., 2010), here we discuss several best practices

to improve rigor in preclinical research in neuroscience, focusing

on transparency and thoroughness in reporting considerations

of experimental design, data analysis and statistics, data inclu-

sion/exclusion, data management, publication, and resource

sharing.

What Is a Preclinical Study?
A definition proposed at the NINDS workshop in 2012 was that a

preclinical study is one that tests a biological concept in an ani-

mal model of a human disorder. However, in biotech/pharma,

‘‘preclinical’’ typically means everything prior to human biology

validation studies and/or phase 1 human safety trials, i.e., every-

thing done in cells and animals. Preclinical studies that are

conducted in vitro also can suffer from a lack of rigor and thus

reproducibility. Thus, we favor the broader definition, which en-

compasses molecular and in vitro studies that provide mecha-

nistic understanding of disease pathophysiology to in vivo

studies using animal models of human neurological or psychiat-

ric disorders. Indeed, validation of a novel molecular disease

mechanism in vivo has become a virtual prerequisite for publica-

tion in ‘‘high profile’’ journals. Why is this issue especially impor-

tant for preclinical research? In the normal course of science,

many basic discoveries turn out to be wrong. Science is gener-

ally self-correcting and moves on (but see Ioannidis, 2012 for

an opinion on why this may not always be the case). In the

case of translational work whose goal is to accelerate develop-

ment of therapeutic interventions, promising findings are widely

reported in the lay press and may lead to the rapid dedication of

significant resources to accelerate translation to the clinic. Thus,

time and dollars can be wasted before there is time for the self-

correction process to occur. A failure to replicate in this context

takes a toll on the public, shaking people’s faith in science as

fundamental to improving health. It is for these reasons that
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failure to replicate preclinical research focused on translating

basic science to the clinic has a high potential impact. The large

number of failed clinical trials for neurological and psychiatric

disorders is often discussed in terms of lack of ‘‘construct

validity,’’ i.e., that animal models do not adequately represent

the pathophysiology of human neurological disorders. These

are complicated issues that require detailed consideration of

mechanisms (Hyman, 2012; Nestler and Hyman, 2010; Willner

and Mitchell, 2002). A consideration of these is beyond the

scope of this Perspective, but these issues are discussed else-

where in this issue (Pankevich et al., 2014).

Experimental Design Considerations
Good Project Management

Designing preclinical experiments is multifaceted, similar in

important ways to designing clinical trials, but often involves

less formal planning. Clinical trials always predefine the experi-

mental and control groups, number of subjects, methods of

assignment to groups, blinding, primary and secondary outcome

measures, and stopping points. In contrast, most papers report-

ing preclinical studies are collections of data generated at

different times and carried out with different degrees of preplan-

ning that are bundled together and presented as if the whole

thing was a linear plan from concept to conclusions. Typically,

the situation is less organized. The story may start with a novel

discovery followed by pilot experiments and then more defined

experiments and finally end with a test of concept in an animal

model of a neurological or neuropsychiatric disorder. Individual

labs may not have experience in the different levels of analysis

(from molecule to animal model). When such studies are pub-

lished, there is an implicit assumption (and sometimes explicit

statement) that the findings might be the first step in moving

the work from the bench to the bedside. But the key prerequi-

sites for this are that the preclinical findings are robust and repli-

cable. Although the early stages of research on a project are

often nonlinear, unplanned, and serendipitous, the pivotal data

in a preclinical study should be gathered with formal planning

to maximize rigor.

The elements to be planned in a preclinical study are similar to

what is done in a clinical trial. Determination of endpoint sensi-

tivity, and thus the required ‘‘n’’ of subjects to adequately test

a hypothesis, random assignment of subjects to treatment

groups, experimenter blinding, and inclusion of positive and

negative control groups, are de rigueur in preclinical and clinical

studies alike. Careful consideration of design parameters in

advance of experimental execution has several benefits. Deci-

sion trees that include key go/no-go benchmarks, and the pa-

rameters that need to be met for each, not only can help clarify

but can also capture thinking in a particular information land-

scape. Decision points can be revisited as information changes

or new data are obtained, and if these are captured in written or

electronic lab notebooks, become living documents of critical

thinking and iterative hypothesis refinement. Additional benefits

include optimization of resource allocation and use, including

experimenter time, as well as providing a roadmap to assem-

bling key findings for a publication. A key benefit is that time

devoted to experimental design and decision making criteria

can highlight ambiguity in hypothesis testing and raise aware-
ness of, and thus reduce unconscious bias contributing to,

‘‘testing to a foregone conclusion.’’ With the understanding

that most papers include serendipitous findings and data from

nonlinear and unstructured assessments, a best practice would

be for the Methods section of manuscripts to specifically identify

the data sets from preplanned analyses that include the ele-

ments below and thus were executed with a high level of rigor.

Pre-experiment Power Calculations

One recurring theme at the 2012 Workshop as well as in other

recent summaries of best practices like the ARRIVE guidelines

(https://www.nc3rs.org.uk/arrive-guidelines; Kilkenny et al.,

2010) was the importance of power analyses to determine the

number of subjects required for hypothesis testing to a prespe-

cified level of confidence. Power calculations include consider-

ation of endpoint sensitivity, expected data variability, possible

effect size, and desired level of confidence, underscoring the

need for deep understanding of these parameters prior to exper-

iment execution. Most institutional animal care and use commit-

tees (IACUCs) also require high-level power analyses for studies

involving live animals, but the same considerations apply for

in vitro studies.

Carrying out meaningful power analyses is not trivial, espe-

cially for novel endpoints without prior data needed to predict

effect size and calculate expected standard deviation. Also, for

IACUCs, power calculations may be used as a means to mini-

mize the number of animals used in a particular experiment,

and researchers may be tempted to reduce the number of ani-

mals to speed completion of a study. The consequence is that

a study with significant results may still have very low statistical

power. Indeed, one analysis suggests that low statistical power

is an endemic problem in neuroscience (Button et al., 2013).

Another recent review on rigor in translational medicine opines

that, ‘‘It is better to fund a large study that gives useful and reli-

able data than to fund any number of smaller studies that might

appear to provide a reduction in animal numbers but in fact

provide data of limited use’’ (Howells et al., 2014). Larger

numbers of animals means higher costs for fewer experiments,

and balancing this against ‘‘overall impact’’ is something that

funding agencies will need to consider going forward.

Power calculations require a determination of ‘‘n’’ and there is

not universal agreement on what ‘‘n’’ means in different neuro-

science subdisciplines. A casual perusal of a recent issue of

this journal revealed that cellular experiments use, for example,

n of spines or synapses, n of neurons or n of slices from the

same or different animals. In vivo physiology experiments use

n of cells, rarely n of animals, while behavioral experiments use

an n of animals.

An important consideration is that elements in a single animal

are related samples because they come from an organism that

has a life experience that might affect all elements of the sample.

But there are situations where numbers of animals are intention-

ally kept small for ethical reasons (for example, studies involving

primates). There are statistical approaches to this problem,

for example, using a repeated-measures statistic design where

different samples from a single subject (for example different

sections) are treated as a repeated measure (Darian-Smith

et al., 2014). Enhancing rigor for studies with small numbers of

animals that would otherwise be underpowered may require
Neuron 84, November 5, 2014 ª2014 Elsevier Inc. 573
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developing new statistical tools with nested designs. While there

is room for differences of opinion and practice, an explicit state-

ment that explains the definition of and rationale for n should be

included in the methodology section of manuscripts.

Defining Starting and Endpoints of a Preclinical Study

As discussed above, most preclinical studies differ from clinical

trials in that they often start with a serendipitous finding, move to

preliminary studies to work out parameters, define conditions,

and optimize testing protocols and the sensitivity of endpoints

of interest, and then to formally planned tests of concept. It is

acceptable (and may be necessary) to include data from pilot

experiments in the final report, but it is important to distinguish

between ‘‘preliminary’’ and ‘‘final’’ experiments because of the

probable difference in formal planning. For example, studies of

disease models where pathophysiology evolves over months

to years, or models of brain or spinal cord injury, often include

data from experiments carried out over prolonged time intervals,

sometimes several years. In may be appropriate to include ani-

mals from preliminary experiments in the final analysis, but it is

important to explain how the data were compiled. Conditions

can change over time, especially when measures depend on

personnel whose skills may evolve (up or down!) or when there

is personnel turnover. The basis for inclusion/exclusion of data

sets in the published report should be made explicit, ideally as

part of the pre-execution experimental plan. Methodology and

analysis sections of manuscripts should distinguish between

preliminary and final experiments and describe which of the

former are included in the analyzed data.

Random Assignment to Groups

A particularly problematic execution consideration in preclinical

experiments is random assignment of subjects to treatment

groups, a sine qua non in clinical trials. On the surface, this would

seem easy to achieve in preclinical experiments involving ani-

mals, but there are practical complications. For example, surgi-

cal procedures required for creating models of disorders (spinal

cord injury, TBI, stroke, and jugular vein cannulation for IV drug

studies) are complicated and time consuming. Consequently,

there is a limit to the number of animals that can be prepared

on a given day. Careful planning is required to ensure that sub-

jects prepared at different times are distributed across groups,

and the best practice would be to do this in a random fashion.

Random assignment is not always feasible or practical, however.

Consider the situation where an experiment involves creating a

spinal cord injury, TBI, or stroke in animals, some of which will

receive transplants of cells that must be expanded in vitro for

some time prior to transplantation. If a lab has the capacity to

create injuries in ten rats on a given day, and there are two

treatment groups (cells and no cells), then n = 5 per group for

that day. This would almost certainly not pass a power analysis

for any except the most robust and sensitive endpoints.

The obvious theoretical solution is to create injuries on several

different days and then combine data from the different days,

but this would require staging the cell culture procedure so

that cells would be available on the many different days that

they were needed. Some labs may have the capacity (both tech-

nical and financial) to do this; others may not. It is possible

(likely?) that many studies in the literature take themore practical

approach of preparing a batch of cells (or other complicated
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treatment), then preparing the group that receives transplants

on one day and the control groups on different days. While these

practical considerations are reasonable, a best practice is to

explicitly describe these in a manuscript methodology section.

Another example of a complication is that preparation of a treat-

ment (cells for example) may take time, and after preparation, the

cells may remain viable for only a defined time period. To avoid

deterioration of the cells, it may be necessary (or at least optimal)

to prepare the transplant group at one time and the control at a

different time. This strategy does not invalidate the study, but it is

a critical best practice to be completely transparent about the

procedure in the methods section of a manuscript and consider

caveats. As a side note, when the viability of a treatment may

change over time (as in cells with limited viability), it is important

to keep track of the order in which subjects are treated so that

potential loss of effect can be detected. The issue of record

keeping is discussed further below.

Blinding as a Practical Standard

A key but quite problematic element of experimental execution

is blinding the experimenter to subject groups/treatments. One

issue is when blinding should come into play. Slavish adherence

to blinding is not desirable. In the exploratory phase of a research

project, blinding disables the most powerful analytical tool that

we possess—our brains. The problem with blinding during initial

analysis is that it is often unclear what the ‘‘phenotype’’ of a pos-

itive (or negative) result will be. For example, if an intervention

is designed to enhance axon growth, this could be manifest in

many different ways. Failing to analyze anatomical material

with knowledge of groups may cause one to miss important ef-

fects or to design quantitative analyses that will not detect differ-

ences among treatment groups. The blind analysis takes place

after one has an idea what one is trying to assess. One can

code and shuffle slides for blind analysis or pass the analysis

to someone who remains blind.

There are also reasons for at least onemember of the research

team to be unblinded during behavioral testing. For example, if

some animals begin to exhibit symptoms of pain, wasting, or

any of a host of abnormal behaviors, it is prudent to figure out

whether these cases are from one treatment group. Such events

may call for early termination of an experiment or modification of

the experimental plan.

There is consensus that blinding is important to reduce

possible bias, but blinding can be harder to achieve than one

might guess, and sometimes cannot be achieved at all. For

example, for studies that involve surgical procedures, details of

the procedure may allow animal identification in later testing.

Postoperative care may also introduce identifiers. Best practice

would be to have the individuals who deliver treatments blind

with respect to the test versus control (vials marked Drug A

versus Drug B, for example). This may be impossible, however,

for treatments that involve surgical delivery of cells or that require

different surgical protocols. When the staff who deliver treat-

ments cannot be kept blind, then it is important that treatment

and testing be done by different staff. It is also useful to have a

separate person compile and analyze data. Obviously, it is diffi-

cult and probably impossible for a single individual or a small lab

with few personnel to carry out a truly blind experiment involving

an injury or similar intervention.
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It is also sometimes impossible to be blind; the treatment itself

may lead to changes that allow identification of groups. Treat-

ments may cause physical signs (e.g., treatment with Rolipram

causes porphyrin to accumulate in the eyes), changes in general

behavior (hypo- or hyperactivity), changes in weight, or changes

in physical appearance (e.g., rats treated with the P2X7 receptor

antagonist Brilliant Blue G are blue for a few days after treat-

ment). The procedures used to achieve blinding, description of

factors such as the ones above that make it impossible to

achieve blinding, and the interpretive caveats resulting from

lack of blinding should be included in methodology sections of

papers.

Appropriate Expertise with Assays and Assessments

Preclinical studies often involve analyses at multiple levels,

sometimes ranging from genetic/molecular/cellular to behavior.

The starting point for a preclinical study may be at a molecular/

cellular level and then proceeds through animal models of disor-

ders. Few labs are expert in all level of analyses in a typical pre-

clinical study, and there can be lack of appreciation of limitations

and caveats. This is a broad and complicated topic but some key

points are worth noting. All assessments should include appro-

priate positive and negative controls. Defining what controls

are sufficient is not always straightforward. Also, it is important

to distinguish between ‘‘assays’’ that have positive and negative

standards linked to defined physical parameters and ‘‘assess-

ments’’ that have no external standards. Most functional/behav-

ioral tests have no external standards, so positive and negative

controls are valuable. It is also worthwhile to distinguish between

assessments that have a reproducible quantitative readout

versus those that depend on judgment (albeit by highly trained

experts). In the latter, reliability over time and interrater reliability

are important. Acceptance of claims is influenced by the experi-

ence of a lab, and historical reliability is a factor. For example, if

a given lab has published numerous studies using a particular

injury model, and the outcome measures in control groups

are comparable over time, one is more confident of a report

of a treatment effect than is the case from a lab without prior

experience.

The issue of sufficiency of expertise raises the question of

whether some preclinical research should be done on a collabo-

rative or contract basis in labs with extensive experience. This

was the rationale behind the NINDS-supported FORE-SCI

contracts as well as some other more recent initiatives (Tabak,

2014). It may be useful to consider new paradigms involving

multiple investigators and core labs focused on particular

disorders, or fee-for-service organizations expert in a particular

approach, as is commonly done in biopharma. In academia,

such activities would require completely different funding para-

digms than currently exist.

Record Keeping for Methodological Details

Scientists generally keep good records of outcome data but are

often less compulsive about records of methodological details

that can be critically important in terms of replicability. Examples

are too numerous to cover but include such things as timing of

surgical procedures, time of day and order of behavioral testing,

timing between functional/behavioral testing, and other events

including postoperative care (for example, bladder expression

for spinal cord injured animals). A similar long list could be
made for experiments involving cells in culture, which can be

highly sensitive to very slight changes in culturing conditions,

causing them to respond differently in the same assay (Bissell,

2013). Keeping track of conditions that are not actually part of

the formal experiment can allow detection of variables that influ-

ence outcome. In preclinical studies, there is no such thing as

collecting too much information.

Data Analysis and Statistical Considerations
Establishing a statistical analysis plan, including interim analyses

and futility assessments, how data will be tested across treat-

ment groups for significance, and rules for data exclusion, prior

to initiation of a study, are less common in preclinical experi-

ments than in clinical studies and drug trials, where these are

laid out in expansive protocols and typically reviewed at several

organizational levels. Description of analysis parameters in

advance of experimental execution has several benefits. Indeed,

it is difficult to envision a scenario where this would not benefit

scientific rigor and replicability and reduce bias. The statistical

analysis plan should be described in the methodology section

of manuscripts. In terms of ‘‘n’’ for statistical analyses, it is

important to distinguish between ‘‘technical replicates’’ and

‘‘biological replicates.’’ An example of a technical replicate is

repeating assays on a single set of samples. An investigator

may prepare multiple gels from the same sample and then quan-

tify a given band across gels yielding a measure of central ten-

dency and variance. Gene array analysis often involves repeated

amplification of RNA from a single sample, which is a technical

replicate. Technical replicates serve as internal checks on reli-

ability of assays in an experiment. One could argue that multiple

slices from a single animal should be considered a type of tech-

nical replicate because the different samples are not indepen-

dent, but this is not standard practice. Biological replicates

involve different independent starting samples from different

subjects. For additional considerations on statistical methods

for experimental biology, see Vaux (2012) and Vaux et al.

(2012). A best practice is to describe the statistical treatment

of technical and biological replicates in the methodology section

of manuscripts and define themeaning of error bars in figure leg-

ends (the latter has been a requirement for Nature since 2004).

One consideration involves compiling groups by combining

data generated at different times: when an interim analysis

approach is used, or in experiments with difficult procedures

or low yield, data from subjects tested at different times and as

part of different experimental groups are often combined.

Many preclinical studies, for example, studies in animal models

of neurodegenerative disorders like Alzheimer’s disease, or brain

injury studies, involve multiple groups or comparisons over

months to years. Defining starts and stops is especially impor-

tant when each individual experiment involves compiling groups

by combining data generated at different times. There are well-

accepted statistical approaches for comparing groups over

time (e.g., repeated-measures ANOVA) and well-defined post

hoc tests allow comparisons at particular time points, if the

overall ANOVA is significant. Carrying out multiple t tests is

problematic, however, because there is a high overall risk of

type I error. This risk is generally underappreciated in in vitro

and in vivo preclinical studies alike.
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There are other less recognized issues with multiple compar-

isons that come up in preclinical studies. Consider, for example,

a study that tests whether a particular intervention improves

function after spinal cord injury. Because patients could benefit

from improvements in any of a number of different functions, it

is common to assess multiple endpoints in preclinical models.

The same is true of clinical studies but clinical trials need to

define a primary endpoint on which the trial stands or falls. A

common measure in rodent SCI studies is hindlimb motor func-

tion, which is often assessed using different standardized tests,

for example, the BBB scale and subscale and ladder beam. One

might also measure sensation by assessing pain and tempera-

ture sensitivity and touch (three or more different tests), as well

as bladder function. Within each data set, corrections for multi-

ple comparisons can and should be applied, but the more

complicated issue is how to deal with the fact that there are mul-

tiple unrelated analyses, each of which carries its own risk of type

I error. A further consideration is how to interpret an outcome

that is common: a significant effect on one endpoint, but not

others. On the one hand, the effect could seem (and be) highly

significant in terms of indicating a particular outcome that may

point to future therapeutic benefit in patients. It would be a

huge accomplishment if an intervention enabled recovery of

bladder function following spinal cord injury even if other func-

tions were not improved. But if this is the only significant finding

in a study with multiple analyses, the possibility of a type I error is

high. This problem is confounded by the ‘‘file drawer’’ phenom-

enon, where the overall study may include analyses that are not

reported because of the lack of a significant difference.

The example above considers functional analyses of living an-

imals, and although the data can be analyzed in many ways, new

data cannot be generated once the animals are dead, which

limits analyses to the assessments that were preplanned. The

situation is different for anatomical analyses. For example, the

initial plan might be to assess lesion size and tissue sparing,

but the results might suggest additional analyses such as as-

sessments of white matter sparing, neuron or oligodendrocyte

loss, astroglial reactivity, or immunostaining for particular sys-

tems (e.g., 5HT) or particular cell types (e.g., inflammatory cells).

While it may be justified to test alternative hypotheses, it is also

important to avoid ‘‘significance chasing,’’ i.e., doing different

analyses until one shows a significant difference. For preclinical

studies, all analyses that were carried out in a particular study

should be reported (although it is not required to present all

data); and it should be explicitly stated which analyses were

preplanned and which were not.

Reporting all analyses does not solve the basic problem, how-

ever, and to our knowledge, there are no well-accepted statisti-

cal approaches to deal with multiple, unrelated analyses across

groups of subjects (but see section below regarding data mining

and archiving for retrospective analysis). Oneway to increase the

comfort level is to report the statistical power of significant find-

ings. This is nowbeing required in at least one neuroscience jour-

nal (eNeuro). Another way is to repeat the experiment. If the same

pattern of results is reproducible (self-replication), this test-retest

bolsters the confidence level in study conclusions. Here, how-

ever, it is important that the endpoints be truly independent.

The methodology section of manuscripts should indicate when
576 Neuron 84, November 5, 2014 ª2014 Elsevier Inc.
a test-retest approach was used, i.e., that one experiment with

x endpoints was completed and analyzed, and then a different

experiment with the same endpoints was executed.

There are well-accepted best practices for reporting statistical

results accurately. Differences are either statistically significant

or not. There is no meaning to the phrase ‘‘nearly significant.’’

On the other side, it is also not appropriate to say ‘‘groups are

the same’’ just because they are not significantly different. For

nonsignificant differences, a measure of central tendency, vari-

ance, statistical test, and p value should be reported with the

statement that data did not differ significantly. While combining

data from different experimental groups that do not differ signif-

icantly is common practice, this could be questionable depend-

ing on the situation. When this is done, descriptive statistics for

each group should be reported as well as pooled values.

Data Inclusion and Exclusion Considerations
One class of preclinical study involves surgical or other interven-

tions to model neurological disorders (e.g., spinal cord injury,

TBI, stroke, and some models of neurodegenerative disorders,

such as MPTP treatment to model aspects of Parkinson’s

disease). Outcomes are typically compared between groups

treated in different ways with the assumption that the injuries

are comparable. Importantly, however, surgical procedures are

variable and there can be accidental injury, excessive bleeding,

or errors in lesion production. A common (and acceptable) prac-

tice is to exclude animals based on predefined exclusion criteria.

It is reasonable, for example, to exclude subjects based on

adverse events during a surgery; the practice, however, is often

to keep the animal and decide later based on early results. This is

especially true when there has been extensive preoperative

testing of subjects. The decision is not straightforward. It is

unfortunate to waste time and money by discarding an animal

that could provide useful data. On the other hand, it may

compromise the experiment to include an animal in which proce-

dural error causes an out of range lesion.

Sometimes decisions to exclude animals are based on func-

tional parameters observed during the early postinjury period.

This is probably acceptable when exclusions are determined

prior to the time that treatments are delivered, but this may not

be possible for treatments delivered during the early postinjury

period. In some cases, it may be reasonable to compose groups

based on functional or other outcome measures, but again, this

is acceptable only before treatments are initiated.

In preclinical studies of neurological or psychiatric disorders,

animals’ health may be compromised by the model. Animals

may die over the course of the study or have to be euthanized

because of animal welfare concerns (deteriorating health, pain,

unacceptable levels of disability). Indeed, for some degenerative

disorders (animal models of ALS or Huntington’s disease), life-

span is an outcome measure. If there is attrition, the question

arises of how to deal with missing data. For example, if an animal

dies suddenly midway through an experiment, should the data

from that subject be removed from all analyses or included up

to the point of death? The decision can dramatically affect inter-

pretations (Couzin-Frankel, 2013). There is room here for differ-

ences of opinion, but it is critical to be completely transparent

about how this issue was handled. We recommend that best
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practice involves reporting attrition as a standard for preclinical

studies because treatment may affect overall health either posi-

tively or negatively, which skews data.

Data Management
The best practices we outline above in experimental design,

execution, analysis, and resource sharing will probably not

impact rigor and reproducibility unless best practices in data

management are also implemented. Data management includes

recording key experimental design and execution parameters,

rigor in archiving raw data, and curation of the process of

turning raw data into a summary figure and thus a conclusion.

There are published best practices for maintaining lab note-

books available from NIH (https://www.training.nih.gov/assets/

Lab_Notebook_508_(new).pdf), and the Howard Hughes Medi-

cal Institute (http://www.hhmi.org/grants/office/scimgmt.html),

as well as recommendations for data recording (González-

Beltrán et al., 2012).

It is worth reinforcing that a complete experimental record in-

cludes not only experimental design parameters, details of

execution of different from standard protocols, a description of

reagents and animal care and use, analysis processes and mac-

ros and statistical procedures, but also how a particular conclu-

sion was reached. Experienced staff and trainees in most labs,

including those of the authors, often maintain lab notebooks

that include some of this information, but rarely all of it. But it is

also all too common to maintain day-to-day notes on a pad of

lined paper—or even scraps of paper—rather than in a lab note-

book. Developing lab standards for indexing andmaintaining key

information, regardless of format, is an obvious best practice.

Standards should be sufficient to ensure that all relevant infor-

mation supporting a conclusion can readily be located at any

point during and after study completion.

All scientists would agree that raw data should be archived,

but archiving practices vary widely. Many labs have electronic

systems, e.g., lab servers or one or more external hard disks,

to archive many types of data. Every PI thinks it trivial to put their

hands on raw data generated by lab personnel, until they actually

attempt to do so. Few of us think of archiving software to read

proprietary file formats that rapidly become outdated—until we

need to access that key data. In addition to raw data, execution

protocols, analysis macros and other procedures, and statistical

analysis protocols should also be archived. The file structure and

naming convention of relevant documents should be obvious to

colleagues, explained and cross-referenced in lab notebooks. A

best practice would be to think through what information would

be required by someone outside of the lab to replicate the exper-

iment and adopt processes to facilitate recording and archiving

this information.

Most scientists would also agree that raw data should never

leave the lab, at least not before archiving, but we are all lax

about this, sometimes with serious consequences. We often

overlook the high failure rate of laptops and external hard drives

that most of us use to be productive outside of standard hours,

and we have all experienced the consequences of hardware

failure. Not only should data on laptops, lab computers, and

equipment be archived, but raw data should be backed up

in at least one other location in case of hardware failure.
Archiving and backups should occur with a periodicity that

mirrors the generation of new information, in most cases daily

or weekly, rather than only when a figure or a presentation is

prepared.

It is worth noting that the Federal Information Management

and Security Act (FISMA) defines rules for data security and

backup. FISMA currently applies to all federal contractors, but

it is conceivable that this requirement will be extended to other

forms of Federal funding.

An often overlooked step between experiment execution and

conclusion that is essential to document and archive is the pro-

cess of turning raw data into a summary figurewith quantification

that supports a particular conclusion. Even if primary data are

readily accessible, it is often unclear how those data were turned

into the data included in a published figure, andwhowas respon-

sible for this key activity. A best practice would be to include this

information in lab notebooks or other formats, such that these

steps can be readily identified and repeated if needed. The prin-

ciples we wish to highlight here as best practices are that all re-

searchers share the responsibility for developing processes to

maintain the integrity of the primary data and to identify mecha-

nisms to facilitate the storage and retrieval of data and analyses

that turn data into conclusions.

Minimizing Bias

Bias is unintentional and unconscious. It is defined

broadly as the systematic erroneous association of

some characteristic with a group in a way that distorts

a comparison with another group . The process of ad-

dressing bias involves making everything equal during

the design, conduct and interpretation of a study, and

reporting those steps in an explicit and transparent way

(Ransohoff and Gourlay, 2010).

There is no way to completely eliminate bias. Investigators do

the work that they do because they suspect or believe that their

approach holds promise. One can also be overtly biased in atti-

tude or approach. Everyone suffers from these forms of bias in

one way or another; the important thing is to minimize the impact

of personal bias on experimental results. Experimental tech-

niques may also be biased in ways that are not immediately

recognizable. For example, it is recognized that simple counts

of elements in histological preparations can be biased. Counts

of any element (cells for example) in a histological section

depend on where the counts are made and the size of the

element being counted (Guillery, 2002). It is for this reason that

‘‘unbiased sampling’’ techniques have been developed,

commonly grouped under the heading ‘‘stereology.’’ In preclini-

cal research involving surgical procedures, there can be unrec-

ognized procedural bias. For example, there may be a tendency

to be more careful with the ‘‘experimental’’ group during the sur-

gery, especially if these have had prior costly treatments. If the

order of surgery is nonrandom, fatigue may affect the surgeon’s

performance over the course of a day. A best practice is to

explicitly report approaches used to reduce/control for unin-

tended bias inMethods sections, but in the end, it may be impos-

sible to eliminate all sources of unintended bias.
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Publication and Reporting Considerations
The common practice of reviewers of requesting additional

experiments presents different challenges. We (the authors)

have both given and received such requests, and it is true that

the additional experiments that reviewers request generally

strengthen a paper. At the same time, this is an example of a

‘‘perverse incentive,’’ because the results of additional experi-

ments may determine whether or not a paper will be found

acceptable. A draconian solution would be something like a

one-strike rule; a paper would be considered based on the

data available or it would be rejected. Additional data would

not be requested or accepted. There are obvious downsides to

this, including the lost opportunity to improve upon the science.

We propose that at a minimum, a best practice would be to

include a statement in the methodology section of a manuscript

indicatingwhich experiments were done in response to a request

for additional data. Another interesting idea involves ‘‘registered

reports’’ in which it is the experimental approach that is reviewed

and accepted or rejected by a journal and published regardless

of the outcome. This is a new publishing initiative at the journal

Cortex (Chambers, 2013). One purpose is to address the ‘‘file

drawer’’ problem for negative results, but with the added benefit

that all aspects of the experiment are preplanned with rigor in

much the same way as a clinical trial.

Many of the issues and best practiceswe raise herewill require

more expansive methodology and reagent sections in published

manuscripts. These would require review that is as comprehen-

sive as for other parts of the manuscript. One approach would

be for journals to relax word and page limits for print and online

articles. Analternative approachwouldbe tohave anabbreviated

methods section in the print version and amore compete version

in the online and PDF versions. In those journals that permit sup-

plemental information, for particularly novel or complex experi-

mental procedures, authors could be requested to provide links

to detailed experimental protocols. An effort to comprehensively

describe reagents and methods in papers would be the single

simplest step to facilitate replication. Because reviewers often

are asked to concentrate on the broad impact, novelty, and gen-

eral interest of a manuscript, it may be useful to consider imple-

mentation of a two-phase review. Details of methodology would

be considered separately if a paper was considered potentially

acceptable based on general considerations defined by journal

policy. Reviewers could then specify whether or not they re-

viewed for methodological details. Some journals are now

including reviewer checklists, which define areas to be ad-

dressed, andat least one journal,Science, nowutilizes aseparate

expert review of statistical methods prior to final acceptance.

Resource Sharing

A problematic issue in terms of replication is the availability

of specialized reagents and animal models to individuals who

wish to replicate published results. Many journals and granting

agencies have well-articulated policies on resource sharing.

While requests are rarely denied outright by authors, many

languish in inboxes or voicemail. The issue is much more com-

plex for reagents and resources from companies that are not

commercial products, such as proprietary antibodies or agents

that are under development such as human stem cells. Negotia-

tion of MTAs or other collaborative agreements often delay and
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sometimes prevent the replication of key findings and require

an investment of time and energy that working scientists may

consider disproportionate to their value.

An extreme measure would be for funding agencies and jour-

nals to retract funding or refuse to accept papers if authors are

unable or unwilling to provide key tools required for replication.

But this does not take into consideration the complexity of

MTA negotiations and potential complications for papers using

reagents from companies that are not commercial products.

Having such a requirement would impede or prevent some

collaborations between the academic and private sector, and

requiring that a paper be rejected for these reasons is not

desirable. Clearly, one rule will not fit all, and this topic deserves

further consideration by academic and industrial neuroscientists

alike.

A moderate option would be to require manuscripts to list

those resources that will be made available upon request and

the author point of contact. Reviewers could be asked to review

this information and determine whether the resources are suffi-

cient for replication or, if the situation warrants, an exemption

from the general requirement. It is clear that these recommenda-

tions would have a positive impact on data reproducibility, but

it is equally clear that maintaining resources and in particular

animal lines could prove practically and financially burdensome

to authors. One initiative worth noting is from NeuroInfor-

matics Framework Resource Identification Initiative to estab-

lish a framework for discoverability of key reagents (https://

www.force11.org/Resource_identification_initiative). Consider-

ation of a time limit for resource availability postpublication, ear-

marking of grant funds to support resource sharing as a budget

line item, depositing animal lines at a commercial vendor prior to

or within 3 months of publication, among other practicalities,

would address some of the challenges presented by these solu-

tions. Although this landscape is quite complicated, we propose

a best practice of stating specifically in a manuscript which

resources would be readily available and which have access

restrictions.

Data Sharing

A particularly important but often overlooked resource is the raw

data collected in experiments. Making raw data available upon

request, for example, to enable an independent statistical

assessment or for statistical comparison with replication data,

is as valuable an experimental resource as a construct encoding

a novel fluorescent indicator or transgenic mouse line. There

would be widespread agreement that raw data should be

archived, and most, but admittedly not all, data are now elec-

tronically archived in formats that are widely accessible (e.g.,

spreadsheets, images, dot-cvs or text files, etc.) and easily

disseminated upon request. Archiving data for a decade as a

best practice balances the desire to archive data for future use

and the practical burdens of storage. Interesting experiments

are being launched in terms of data archiving and analysis in

the area of spinal cord injury. One approach is the development

of a reporting standard called ‘‘Minimal Information about a Spi-

nal Cord Injury experiment’’ (MIASCI). The idea is that standard

data elements would be collected as part of every spinal cord

injury experiment and reported to an online database (Lemmon

et al., 2014). Another approach involves collection of raw data

https://www.force11.org/Resource_identification_initiative
https://www.force11.org/Resource_identification_initiative
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of all types from investigators who are willing to contribute and

compiling the data into a database called ‘‘Visualized Syndromic

Information and Outcomes for Neurotrauma-SCI’’ (VISION-SCI;

Nielson et al., 2014). The database allows for syndromic analysis

using advanced statistical methods, including principal compo-

nent analysis (PCA), where composite PC scores can be used for

hypothesis testing regarding injury severity or treatment condi-

tion on the entire PC outcome measure, as opposed to tradi-

tional methods testing single measures at a time. This approach

allows for a more complete assessment of recovery on the com-

plex interactions of multiple measures simultaneously (Ferguson

et al., 2013; Nielson et al., 2014).

Reporting Negative Results and Replication Studies

In an optimal scientific ecosystem of rigorous experimental

design/execution/statistical analysis and open resource and

raw data sharing, how might we as neuroscientists disseminate

results on lack of replication? In considering publication of nega-

tive results in general, it is worth distinguishing between an exact

replication and a retest of concept. The latter is probably much

more common than the former. An exact replication is one in

which an attempt is made to duplicate the conditions of the orig-

inal experiment in all respects, and obviously this is impossible.

Duplication requires extensive communication with the original

investigators, because Methods sections are at best abbrevi-

ated summaries of what the original investigators considered

to be the critical methodological details, and reagents and

animals used may or may not be sufficiently similar to replicate

findings, among other differences. A retest of concept involves

testing the same intervention, but not necessarily under exactly

the same experimental conditions. One wonders how often ru-

mors about lack of replication involve instead lack of conceptual

validation. It would be great to have a forum for making results of

replication available to the broader community, but quality con-

trol of replication studies is as problematic as for any other type

of study. A recent meeting of the European College of Neuro-

pharmacology network focused on preclinical data reproduc-

ibility in the context of R&Dorganizations. This group is surveying

members in an attempt to compile a list of papers that at

least one R&D group had tried to replicate without success.

The goal is to acknowledge challenges in replicating data and

develop a forum for sharing these results. In the end, one comes

back to the traditional model of peer review, and with that, one

might as well just publish the data in the usual way. Despite

expectations to the contrary, it is not difficult to publish negative

results of replications in regular journals, as evidenced by

one example that every replication carried out as part of the

NINDS Facilities of Research Excellence-Spinal Cord Injury

was accepted in a peer-reviewed journal.

In terms of approaches to replication and visibility for replica-

tion efforts and failures to replicate, there are a number of

pilot initiatives. For example, Science Exchange has announced

plans for commissioned replication studies (https://www.

scienceexchange.com/). Also, eLife has announced that they

will consider articles reporting replication studies for key cancer

papers (in collaboration with Center for Open Science and Sci-

ence Exchange), and eNeuro, the new open access journal of

the Society for Neuroscience, will also consider replication

studies and reports of negative results.
Table 1 lists the best practices we have discussed here. As

best practices are defined and adopted, it will be important to

develop toolkits for training at all levels. This does not just apply

to early-stage investigators. Many of the practices that are per-

ilous are just now being revealed, and senior investigators are

no more knowledgeable about these than a first year graduate

student. A starting point to raise the bar for scientific rigor is to

train the next generation of scientists in these and other best

practices. It will be important to develop new toolkits for students

and postdocs that might include didactic lecture-based classes.

While most graduate classes include a discussion of research

articles, there is rarely discussion of overall rigor. Professional

societies, academic programs, and educators could develop

and broadly disseminate polished webinars with training mod-

ules. Increasing rigor for established investigators will probably

require other approaches, and the main ‘‘training’’ may come

from the school of natural consequences, such as enforcement

of new guidelines by funding agencies on the input side and jour-

nals on the output side.

Relationship between the ‘‘Rs’’: Enhanced Rigor Does
Not Guarantee Reproducibility
Current attention on lack of experimental rigor resulted from

increasing awareness of lack of reproducibility in preclinical

research. The assumption is that the former is the cause of the

latter, but this may not be true. Results from biological experi-

ments are influenced by a host of variables, not all of which are

actually under the control of the experimenter. This is especially

true of assessments of function using behavioral tests, which are

often considered to be the most important outcome measure

in preclinical studies of neurological disorders. Even if strain,

gender, and age are held constant, animal behavior in a given

setting depends on a host of variables including prior training,

housing conditions, testing conditions, the way the investigators

handle the animals, time of day, and, yes, maybe even phase of

the moon. A recent study even indicates that responses in tests

of pain sensitivity vary depending on the gender of the handlers

and even whether handlers wear clothing previously worn by

someone of the opposite sex (Sorge et al., 2014).

Much of the discussion about why particular studies are not

replicated focus on the argument that the replication study did

not exactly replicate the conditions of the original experiment.

This is especially true with complicated modern techniques

that require years of experience to master (for a viewpoint on

this, see Bissell, 2013). The failure of a less experienced lab to

replicate the findings may be due more to the inexperience

than the veracity of the original claim. This may be true, but in

terms of preclinical studies that aspire to provide translatable in-

sights into human disorders, a treatment effect that depends so

critically on the exact experimental conditions is highly unlikely to

be translatable to the highly variable human situation. The bot-

tom line is that the more a particular result depends on the exact

experimental conditions, the less likely it is to be replicable even

if the original experiment was done with the highest level of rigor.

Conclusion
So how bad is it that there is a lack of replication in preclinical

studies (or, what about ‘‘mortis’’)? In the authors’ opinion, it is
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Table 1. A Primer of Best Practices to Enhance Rigor and Reproducibility

Topic Best Practice Benefits

Experimental

Design

Describe experiment planning in manuscript Methods

section, including:

d Power calculations (endpoint sensitivity, variability,

effect size, desired level of confidence, definition

and rationale for n).

d Inclusion/exclusion of data sets, description of pilot,

and final data sets included in analyses.

d Random assignment to treatment groups,

description of exceptions.

d Procedures to achieve blinding, exceptions to

blinding, and resulting interpretive caveats.

d Details of reagents and assays sufficient to facilitate

independent replication.

d Positive and negative controls.

Capture thinking in incomplete information landscape.

Iterative hypothesis refinement.

Deep understanding of assessments in advance of

execution.

Reduce testing to foregone conclusion.

Optimize resource allocation and use.

Create roadmap to assembling publication.

Analysis and

Statistics

Describe statistical analysis plan in manuscript Methods

section, including:

d Methods to test for significance.

d Interim analyses, futility assessments.

d Data inclusion/exclusion, attrition.

d Statistical treatment of technical and biological

replicates.

d Test-retest approaches.

d Statement of central tendency, variance, statistical

test, and p value for significant and nonsignificant

differences.

d Descriptive statistics for groups as well as pooled

values.

Enhance awareness of and reduce sources of potential

unconscious bias.

Minimize type 1 error.

Data

Management

Develop lab standards for indexing and maintaining

information, including:

d Recording of key experimental design and

execution parameters.

d Archiving raw data and at least one backup with

appropriate frequency.

d Curation of process from raw data to summary

figure to conclusion.

Ensure all information supporting a conclusion can be

located during and after study completion.

Resource

Sharing

Include lists of resources in manuscripts that will be made

available and point of contact for requests.

Indicate time limit for resource availability, if any.

Include budget line item to support resource sharing in

funding applications.

Deposit animal lines at commercial vendor within 3months

of publication.

Provide raw data upon request.

Simplify sharing of reagents, protocols, raw data to

facilitate replication, interpretation of data.

Help distinguish lack of conceptual validation versus

lack of replication.

Enable meta-analyses and data basing.

Publication

and Reporting

Provide comprehensive review checklist for methodology,

reagents, and resource sharing.

Two-stage review: if manuscript meets general journal

criteria (novelty, impact, general interest), initiate second

stage of review for technical merit including details relating

to rigor.

Raise awareness of key metrics for determining rigor.

Facilitate replication of key findings.
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critical to have a laser focus on exactly what did not replicate and

why. As discussed above, most preclinical studies start with

novel basic biological findings that form a foundation that is

then built upon to translate the findings to an animal model rele-

vant to one or more aspects of a neurological or psychiatric dis-

order. This is a tall order for most CNS diseases, and most of

these attempts will fail, especially if the results depend critically

on the exact details of the experiment. Phenomena that are not
580 Neuron 84, November 5, 2014 ª2014 Elsevier Inc.
robust againstminor variations in conditionswill be hard to trans-

late into therapeutic interventions. We have the best chance of

learning from failures to replicate if both the original and replica-

tion studies are carried out using practices that assure the high-

est level of rigor.

The fact that scientists at all levels and in different types of or-

ganizations continue to take long shots on this goal is a good

thing, even in the face of the inevitable failure—including failures
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of our own making. We owe it to the society that supports us to

learn as much as possible from these failures.
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